This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsexpim | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝐵 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ 𝐵 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝐵 ) ) |
| 3 | zexpcl | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑁 ) ∈ ℤ ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ↑ 𝑁 ) ∈ ℤ ) |
| 5 | 4 | adantll | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ↑ 𝑁 ) ∈ ℤ ) |
| 6 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
| 8 | dvdsmul2 | ⊢ ( ( ( 𝑘 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∥ ( ( 𝑘 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∥ ( ( 𝑘 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 10 | zcn | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
| 12 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 14 | simplr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℕ0 ) | |
| 15 | 11 13 14 | mulexpd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝐴 ) ↑ 𝑁 ) = ( ( 𝑘 ↑ 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 16 | 9 15 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∥ ( ( 𝑘 · 𝐴 ) ↑ 𝑁 ) ) |
| 17 | oveq1 | ⊢ ( ( 𝑘 · 𝐴 ) = 𝐵 → ( ( 𝑘 · 𝐴 ) ↑ 𝑁 ) = ( 𝐵 ↑ 𝑁 ) ) | |
| 18 | 17 | breq2d | ⊢ ( ( 𝑘 · 𝐴 ) = 𝐵 → ( ( 𝐴 ↑ 𝑁 ) ∥ ( ( 𝑘 · 𝐴 ) ↑ 𝑁 ) ↔ ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| 19 | 16 18 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝐴 ) = 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| 20 | 19 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝐴 ) = 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| 22 | 2 21 | sylbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ 𝐵 → ( 𝐴 ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |