This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdnn | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
| 3 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 4 | 3 | simpld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 6 | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) | |
| 7 | 6 | neneqd | ⊢ ( 𝐴 ∈ ℕ → ¬ 𝐴 = 0 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ¬ 𝐴 = 0 ) |
| 9 | 8 | intnanrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 10 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 11 | 2 9 10 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 12 | nndivdvds | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ) | |
| 13 | 11 12 | syldan | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ) |
| 14 | 5 13 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |