This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of expcn as of 6-Apr-2025. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 23-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expcnOLD.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | expcnOLD | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnOLD.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = 0 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 0 ) ) | |
| 3 | 2 | mpteq2dv | ⊢ ( 𝑛 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑛 = 0 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑘 ) ) | |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 7 | 6 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) | |
| 9 | 8 | mpteq2dv | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑁 ) ) | |
| 12 | 11 | mpteq2dv | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ↔ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 14 | exp0 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) | |
| 15 | 14 | mpteq2ia | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 16 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 17 | 16 | a1i | ⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 18 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 19 | 17 17 18 | cnmptc | ⊢ ( ⊤ → ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 20 | 19 | mptru | ⊢ ( 𝑥 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) |
| 21 | 15 20 | eqeltri | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 0 ) ) ∈ ( 𝐽 Cn 𝐽 ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) | |
| 23 | 22 | cbvmptv | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) |
| 24 | id | ⊢ ( 𝑛 ∈ ℂ → 𝑛 ∈ ℂ ) | |
| 25 | simpl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝑘 ∈ ℕ0 ) | |
| 26 | expp1 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) | |
| 27 | 24 25 26 | syl2anr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ∧ 𝑛 ∈ ℂ ) → ( 𝑛 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) |
| 28 | 27 | mpteq2dva | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) ) |
| 29 | 23 28 | eqtrid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) ) |
| 30 | 16 | a1i | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 31 | oveq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ↑ 𝑘 ) = ( 𝑛 ↑ 𝑘 ) ) | |
| 32 | 31 | cbvmptv | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) = ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ 𝑘 ) ) |
| 33 | simpr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 34 | 32 33 | eqeltrrid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( 𝑛 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 35 | 30 | cnmptid | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ 𝑛 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 36 | 1 | mulcn | ⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 37 | 36 | a1i | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 38 | 30 34 35 37 | cnmpt12f | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑛 ∈ ℂ ↦ ( ( 𝑛 ↑ 𝑘 ) · 𝑛 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 39 | 29 38 | eqeltrd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 40 | 39 | ex | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∈ ( 𝐽 Cn 𝐽 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) ) |
| 41 | 4 7 10 13 21 40 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |