This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of divccn as of 6-Apr-2025. (Contributed by Mario Carneiro, 5-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | expcnOLD.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| Assertion | divccnOLD | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / 𝐴 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnOLD.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | divrec | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 / 𝐴 ) = ( 𝑥 · ( 1 / 𝐴 ) ) ) | |
| 3 | 2 | 3expb | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( 𝑥 / 𝐴 ) = ( 𝑥 · ( 1 / 𝐴 ) ) ) |
| 4 | 3 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℂ ) → ( 𝑥 / 𝐴 ) = ( 𝑥 · ( 1 / 𝐴 ) ) ) |
| 5 | 4 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / 𝐴 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( 1 / 𝐴 ) ) ) ) |
| 6 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 8 | 7 | cnmptid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 9 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 10 | 7 7 9 | cnmptc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 1 / 𝐴 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 11 | 1 | mulcn | ⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 13 | 7 8 10 12 | cnmpt12f | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( 1 / 𝐴 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 14 | 5 13 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 / 𝐴 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |