This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: ( S2o ) = 1o e. 2o = ( S2o ) . Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: ( 2o e.g 1o ) should not be confused with 2o e. 1o , which is false. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ex-sategoelel12.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 1o , 2o ) ) | |
| Assertion | ex-sategoelel12 | ⊢ 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 1o , 2o ) ) | |
| 2 | 1oex | ⊢ 1o ∈ V | |
| 3 | 2 | prid1 | ⊢ 1o ∈ { 1o , 2o } |
| 4 | 2oex | ⊢ 2o ∈ V | |
| 5 | 4 | prid2 | ⊢ 2o ∈ { 1o , 2o } |
| 6 | 3 5 | ifcli | ⊢ if ( 𝑥 = 2o , 1o , 2o ) ∈ { 1o , 2o } |
| 7 | 6 | a1i | ⊢ ( 𝑥 ∈ ω → if ( 𝑥 = 2o , 1o , 2o ) ∈ { 1o , 2o } ) |
| 8 | 1 7 | fmpti | ⊢ 𝑆 : ω ⟶ { 1o , 2o } |
| 9 | prex | ⊢ { 1o , 2o } ∈ V | |
| 10 | omex | ⊢ ω ∈ V | |
| 11 | 9 10 | elmap | ⊢ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ↔ 𝑆 : ω ⟶ { 1o , 2o } ) |
| 12 | 8 11 | mpbir | ⊢ 𝑆 ∈ ( { 1o , 2o } ↑m ω ) |
| 13 | 2 | sucid | ⊢ 1o ∈ suc 1o |
| 14 | df-2o | ⊢ 2o = suc 1o | |
| 15 | 13 14 | eleqtrri | ⊢ 1o ∈ 2o |
| 16 | 2onn | ⊢ 2o ∈ ω | |
| 17 | 1onn | ⊢ 1o ∈ ω | |
| 18 | iftrue | ⊢ ( 𝑥 = 2o → if ( 𝑥 = 2o , 1o , 2o ) = 1o ) | |
| 19 | 18 1 | fvmptg | ⊢ ( ( 2o ∈ ω ∧ 1o ∈ ω ) → ( 𝑆 ‘ 2o ) = 1o ) |
| 20 | 16 17 19 | mp2an | ⊢ ( 𝑆 ‘ 2o ) = 1o |
| 21 | 1one2o | ⊢ 1o ≠ 2o | |
| 22 | 21 | neii | ⊢ ¬ 1o = 2o |
| 23 | eqeq1 | ⊢ ( 𝑥 = 1o → ( 𝑥 = 2o ↔ 1o = 2o ) ) | |
| 24 | 22 23 | mtbiri | ⊢ ( 𝑥 = 1o → ¬ 𝑥 = 2o ) |
| 25 | 24 | iffalsed | ⊢ ( 𝑥 = 1o → if ( 𝑥 = 2o , 1o , 2o ) = 2o ) |
| 26 | 25 1 | fvmptg | ⊢ ( ( 1o ∈ ω ∧ 2o ∈ ω ) → ( 𝑆 ‘ 1o ) = 2o ) |
| 27 | 17 16 26 | mp2an | ⊢ ( 𝑆 ‘ 1o ) = 2o |
| 28 | 15 20 27 | 3eltr4i | ⊢ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) |
| 29 | 12 28 | pm3.2i | ⊢ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) |
| 30 | 16 17 | pm3.2i | ⊢ ( 2o ∈ ω ∧ 1o ∈ ω ) |
| 31 | eqid | ⊢ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) = ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) | |
| 32 | 31 | sategoelfvb | ⊢ ( ( { 1o , 2o } ∈ V ∧ ( 2o ∈ ω ∧ 1o ∈ ω ) ) → ( 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) ) |
| 33 | 9 30 32 | mp2an | ⊢ ( 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( { 1o , 2o } ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) |
| 34 | 29 33 | mpbir | ⊢ 𝑆 ∈ ( { 1o , 2o } Sat∈ ( 2o ∈𝑔 1o ) ) |