This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: ( S2o ) = Z e. suc Z = ( S2o ) . Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: ( 2o e.g 1o ) should not be confused with 2o e. 1o , which is false. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ex-sategoelelomsuc.s | |- S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) |
|
| Assertion | ex-sategoelelomsuc | |- ( Z e. _om -> S e. ( _om SatE ( 2o e.g 1o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelelomsuc.s | |- S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) |
|
| 2 | id | |- ( Z e. _om -> Z e. _om ) |
|
| 3 | peano2 | |- ( Z e. _om -> suc Z e. _om ) |
|
| 4 | 2 3 | ifcld | |- ( Z e. _om -> if ( x = 2o , Z , suc Z ) e. _om ) |
| 5 | 4 | adantr | |- ( ( Z e. _om /\ x e. _om ) -> if ( x = 2o , Z , suc Z ) e. _om ) |
| 6 | 5 1 | fmptd | |- ( Z e. _om -> S : _om --> _om ) |
| 7 | omex | |- _om e. _V |
|
| 8 | 7 | a1i | |- ( Z e. _om -> _om e. _V ) |
| 9 | 8 8 | elmapd | |- ( Z e. _om -> ( S e. ( _om ^m _om ) <-> S : _om --> _om ) ) |
| 10 | 6 9 | mpbird | |- ( Z e. _om -> S e. ( _om ^m _om ) ) |
| 11 | sucidg | |- ( Z e. _om -> Z e. suc Z ) |
|
| 12 | 1 | a1i | |- ( Z e. _om -> S = ( x e. _om |-> if ( x = 2o , Z , suc Z ) ) ) |
| 13 | iftrue | |- ( x = 2o -> if ( x = 2o , Z , suc Z ) = Z ) |
|
| 14 | 13 | adantl | |- ( ( Z e. _om /\ x = 2o ) -> if ( x = 2o , Z , suc Z ) = Z ) |
| 15 | 2onn | |- 2o e. _om |
|
| 16 | 15 | a1i | |- ( Z e. _om -> 2o e. _om ) |
| 17 | 12 14 16 2 | fvmptd | |- ( Z e. _om -> ( S ` 2o ) = Z ) |
| 18 | 1one2o | |- 1o =/= 2o |
|
| 19 | 18 | neii | |- -. 1o = 2o |
| 20 | eqeq1 | |- ( x = 1o -> ( x = 2o <-> 1o = 2o ) ) |
|
| 21 | 19 20 | mtbiri | |- ( x = 1o -> -. x = 2o ) |
| 22 | 21 | iffalsed | |- ( x = 1o -> if ( x = 2o , Z , suc Z ) = suc Z ) |
| 23 | 22 | adantl | |- ( ( Z e. _om /\ x = 1o ) -> if ( x = 2o , Z , suc Z ) = suc Z ) |
| 24 | 1onn | |- 1o e. _om |
|
| 25 | 24 | a1i | |- ( Z e. _om -> 1o e. _om ) |
| 26 | 12 23 25 3 | fvmptd | |- ( Z e. _om -> ( S ` 1o ) = suc Z ) |
| 27 | 11 17 26 | 3eltr4d | |- ( Z e. _om -> ( S ` 2o ) e. ( S ` 1o ) ) |
| 28 | 15 24 | pm3.2i | |- ( 2o e. _om /\ 1o e. _om ) |
| 29 | 7 28 | pm3.2i | |- ( _om e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) |
| 30 | eqid | |- ( _om SatE ( 2o e.g 1o ) ) = ( _om SatE ( 2o e.g 1o ) ) |
|
| 31 | 30 | sategoelfvb | |- ( ( _om e. _V /\ ( 2o e. _om /\ 1o e. _om ) ) -> ( S e. ( _om SatE ( 2o e.g 1o ) ) <-> ( S e. ( _om ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) |
| 32 | 29 31 | mp1i | |- ( Z e. _om -> ( S e. ( _om SatE ( 2o e.g 1o ) ) <-> ( S e. ( _om ^m _om ) /\ ( S ` 2o ) e. ( S ` 1o ) ) ) ) |
| 33 | 10 27 32 | mpbir2and | |- ( Z e. _om -> S e. ( _om SatE ( 2o e.g 1o ) ) ) |