This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sategoelfvb.s | ⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) | |
| ex-sategoelel.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) | ||
| Assertion | ex-sategoelel | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sategoelfvb.s | ⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) | |
| 2 | ex-sategoelel.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) | |
| 3 | simpr | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝑍 ∈ 𝑀 ) | |
| 4 | simpl | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝑀 ∈ WUni ) | |
| 5 | 4 3 | wunpw | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝒫 𝑍 ∈ 𝑀 ) |
| 6 | 4 | wun0 | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → ∅ ∈ 𝑀 ) |
| 7 | 5 6 | ifcld | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ∈ 𝑀 ) |
| 8 | 3 7 | ifcld | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ∈ 𝑀 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ∈ 𝑀 ) |
| 10 | 9 | adantr | ⊢ ( ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) ∧ 𝑥 ∈ ω ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ∈ 𝑀 ) |
| 11 | 10 2 | fmptd | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 : ω ⟶ 𝑀 ) |
| 12 | 4 | adantr | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑀 ∈ WUni ) |
| 13 | omex | ⊢ ω ∈ V | |
| 14 | 13 | a1i | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ω ∈ V ) |
| 15 | 12 14 | elmapd | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ∈ ( 𝑀 ↑m ω ) ↔ 𝑆 : ω ⟶ 𝑀 ) ) |
| 16 | 11 15 | mpbird | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ ( 𝑀 ↑m ω ) ) |
| 17 | pwidg | ⊢ ( 𝑍 ∈ 𝑀 → 𝑍 ∈ 𝒫 𝑍 ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝑍 ∈ 𝒫 𝑍 ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑍 ∈ 𝒫 𝑍 ) |
| 20 | 2 | a1i | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) ) |
| 21 | iftrue | ⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = 𝑍 ) | |
| 22 | 21 | adantl | ⊢ ( ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = 𝑍 ) |
| 23 | simpr1 | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ ω ) | |
| 24 | 3 | adantr | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑍 ∈ 𝑀 ) |
| 25 | 20 22 23 24 | fvmptd | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) = 𝑍 ) |
| 26 | eqeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝐵 = 𝐴 ) ) | |
| 27 | eqeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐵 ↔ 𝐵 = 𝐵 ) ) | |
| 28 | 27 | ifbid | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
| 29 | 26 28 | ifbieq2d | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) |
| 30 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
| 31 | ifnefalse | ⊢ ( 𝐵 ≠ 𝐴 → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) | |
| 32 | 30 31 | sylbi | ⊢ ( 𝐴 ≠ 𝐵 → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → if ( 𝐵 = 𝐴 , 𝑍 , if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
| 35 | 29 34 | sylan9eqr | ⊢ ( ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) ∧ 𝑥 = 𝐵 ) → if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
| 36 | simpr2 | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ ω ) | |
| 37 | pwexg | ⊢ ( 𝑍 ∈ 𝑀 → 𝒫 𝑍 ∈ V ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → 𝒫 𝑍 ∈ V ) |
| 39 | 0ex | ⊢ ∅ ∈ V | |
| 40 | 39 | a1i | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → ∅ ∈ V ) |
| 41 | 38 40 | ifcld | ⊢ ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) → if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ∈ V ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ∈ V ) |
| 43 | 20 35 36 42 | fvmptd | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) = if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) ) |
| 44 | eqid | ⊢ 𝐵 = 𝐵 | |
| 45 | 44 | iftruei | ⊢ if ( 𝐵 = 𝐵 , 𝒫 𝑍 , ∅ ) = 𝒫 𝑍 |
| 46 | 43 45 | eqtrdi | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐵 ) = 𝒫 𝑍 ) |
| 47 | 19 25 46 | 3eltr4d | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |
| 48 | 3simpa | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) | |
| 49 | 1 | sategoelfvb | ⊢ ( ( 𝑀 ∈ WUni ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| 50 | 4 48 49 | syl2an | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 ∈ ( 𝑀 ↑m ω ) ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| 51 | 16 47 50 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ 𝐸 ) |