This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Instance of sategoelfv for the example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sategoelfvb.s | ⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) | |
| ex-sategoelel.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) | ||
| Assertion | ex-sategoel | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sategoelfvb.s | ⊢ 𝐸 = ( 𝑀 Sat∈ ( 𝐴 ∈𝑔 𝐵 ) ) | |
| 2 | ex-sategoelel.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 𝐴 , 𝑍 , if ( 𝑥 = 𝐵 , 𝒫 𝑍 , ∅ ) ) ) | |
| 3 | simpll | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑀 ∈ WUni ) | |
| 4 | 3simpa | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ) |
| 6 | 1 2 | ex-sategoelel | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → 𝑆 ∈ 𝐸 ) |
| 7 | 1 | sategoelfv | ⊢ ( ( 𝑀 ∈ WUni ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |
| 8 | 3 5 6 7 | syl3anc | ⊢ ( ( ( 𝑀 ∈ WUni ∧ 𝑍 ∈ 𝑀 ) ∧ ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝑆 ‘ 𝐴 ) ∈ ( 𝑆 ‘ 𝐵 ) ) |