This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a valuation of a simplified satisfaction predicate for a Godel-set of membership. (Contributed by AV, 5-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sategoelfvb.s | |- E = ( M SatE ( A e.g B ) ) |
|
| ex-sategoelel.s | |- S = ( x e. _om |-> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) ) |
||
| Assertion | ex-sategoelel | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sategoelfvb.s | |- E = ( M SatE ( A e.g B ) ) |
|
| 2 | ex-sategoelel.s | |- S = ( x e. _om |-> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) ) |
|
| 3 | simpr | |- ( ( M e. WUni /\ Z e. M ) -> Z e. M ) |
|
| 4 | simpl | |- ( ( M e. WUni /\ Z e. M ) -> M e. WUni ) |
|
| 5 | 4 3 | wunpw | |- ( ( M e. WUni /\ Z e. M ) -> ~P Z e. M ) |
| 6 | 4 | wun0 | |- ( ( M e. WUni /\ Z e. M ) -> (/) e. M ) |
| 7 | 5 6 | ifcld | |- ( ( M e. WUni /\ Z e. M ) -> if ( x = B , ~P Z , (/) ) e. M ) |
| 8 | 3 7 | ifcld | |- ( ( M e. WUni /\ Z e. M ) -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) e. M ) |
| 9 | 8 | adantr | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) e. M ) |
| 10 | 9 | adantr | |- ( ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) /\ x e. _om ) -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) e. M ) |
| 11 | 10 2 | fmptd | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S : _om --> M ) |
| 12 | 4 | adantr | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> M e. WUni ) |
| 13 | omex | |- _om e. _V |
|
| 14 | 13 | a1i | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> _om e. _V ) |
| 15 | 12 14 | elmapd | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S e. ( M ^m _om ) <-> S : _om --> M ) ) |
| 16 | 11 15 | mpbird | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S e. ( M ^m _om ) ) |
| 17 | pwidg | |- ( Z e. M -> Z e. ~P Z ) |
|
| 18 | 17 | adantl | |- ( ( M e. WUni /\ Z e. M ) -> Z e. ~P Z ) |
| 19 | 18 | adantr | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> Z e. ~P Z ) |
| 20 | 2 | a1i | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S = ( x e. _om |-> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) ) ) |
| 21 | iftrue | |- ( x = A -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) = Z ) |
|
| 22 | 21 | adantl | |- ( ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) /\ x = A ) -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) = Z ) |
| 23 | simpr1 | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> A e. _om ) |
|
| 24 | 3 | adantr | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> Z e. M ) |
| 25 | 20 22 23 24 | fvmptd | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S ` A ) = Z ) |
| 26 | eqeq1 | |- ( x = B -> ( x = A <-> B = A ) ) |
|
| 27 | eqeq1 | |- ( x = B -> ( x = B <-> B = B ) ) |
|
| 28 | 27 | ifbid | |- ( x = B -> if ( x = B , ~P Z , (/) ) = if ( B = B , ~P Z , (/) ) ) |
| 29 | 26 28 | ifbieq2d | |- ( x = B -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) = if ( B = A , Z , if ( B = B , ~P Z , (/) ) ) ) |
| 30 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 31 | ifnefalse | |- ( B =/= A -> if ( B = A , Z , if ( B = B , ~P Z , (/) ) ) = if ( B = B , ~P Z , (/) ) ) |
|
| 32 | 30 31 | sylbi | |- ( A =/= B -> if ( B = A , Z , if ( B = B , ~P Z , (/) ) ) = if ( B = B , ~P Z , (/) ) ) |
| 33 | 32 | 3ad2ant3 | |- ( ( A e. _om /\ B e. _om /\ A =/= B ) -> if ( B = A , Z , if ( B = B , ~P Z , (/) ) ) = if ( B = B , ~P Z , (/) ) ) |
| 34 | 33 | adantl | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> if ( B = A , Z , if ( B = B , ~P Z , (/) ) ) = if ( B = B , ~P Z , (/) ) ) |
| 35 | 29 34 | sylan9eqr | |- ( ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) /\ x = B ) -> if ( x = A , Z , if ( x = B , ~P Z , (/) ) ) = if ( B = B , ~P Z , (/) ) ) |
| 36 | simpr2 | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> B e. _om ) |
|
| 37 | pwexg | |- ( Z e. M -> ~P Z e. _V ) |
|
| 38 | 37 | adantl | |- ( ( M e. WUni /\ Z e. M ) -> ~P Z e. _V ) |
| 39 | 0ex | |- (/) e. _V |
|
| 40 | 39 | a1i | |- ( ( M e. WUni /\ Z e. M ) -> (/) e. _V ) |
| 41 | 38 40 | ifcld | |- ( ( M e. WUni /\ Z e. M ) -> if ( B = B , ~P Z , (/) ) e. _V ) |
| 42 | 41 | adantr | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> if ( B = B , ~P Z , (/) ) e. _V ) |
| 43 | 20 35 36 42 | fvmptd | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S ` B ) = if ( B = B , ~P Z , (/) ) ) |
| 44 | eqid | |- B = B |
|
| 45 | 44 | iftruei | |- if ( B = B , ~P Z , (/) ) = ~P Z |
| 46 | 43 45 | eqtrdi | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S ` B ) = ~P Z ) |
| 47 | 19 25 46 | 3eltr4d | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S ` A ) e. ( S ` B ) ) |
| 48 | 3simpa | |- ( ( A e. _om /\ B e. _om /\ A =/= B ) -> ( A e. _om /\ B e. _om ) ) |
|
| 49 | 1 | sategoelfvb | |- ( ( M e. WUni /\ ( A e. _om /\ B e. _om ) ) -> ( S e. E <-> ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) ) ) |
| 50 | 4 48 49 | syl2an | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> ( S e. E <-> ( S e. ( M ^m _om ) /\ ( S ` A ) e. ( S ` B ) ) ) ) |
| 51 | 16 47 50 | mpbir2and | |- ( ( ( M e. WUni /\ Z e. M ) /\ ( A e. _om /\ B e. _om /\ A =/= B ) ) -> S e. E ) |