This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-hash . (Contributed by AV, 4-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-hash | ⊢ ( ♯ ‘ { 0 , 1 , 2 } ) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp | ⊢ { 0 , 1 , 2 } = ( { 0 , 1 } ∪ { 2 } ) | |
| 2 | 1 | fveq2i | ⊢ ( ♯ ‘ { 0 , 1 , 2 } ) = ( ♯ ‘ ( { 0 , 1 } ∪ { 2 } ) ) |
| 3 | prfi | ⊢ { 0 , 1 } ∈ Fin | |
| 4 | snfi | ⊢ { 2 } ∈ Fin | |
| 5 | 2ne0 | ⊢ 2 ≠ 0 | |
| 6 | 1ne2 | ⊢ 1 ≠ 2 | |
| 7 | 6 | necomi | ⊢ 2 ≠ 1 |
| 8 | 5 7 | nelpri | ⊢ ¬ 2 ∈ { 0 , 1 } |
| 9 | disjsn | ⊢ ( ( { 0 , 1 } ∩ { 2 } ) = ∅ ↔ ¬ 2 ∈ { 0 , 1 } ) | |
| 10 | 8 9 | mpbir | ⊢ ( { 0 , 1 } ∩ { 2 } ) = ∅ |
| 11 | hashun | ⊢ ( ( { 0 , 1 } ∈ Fin ∧ { 2 } ∈ Fin ∧ ( { 0 , 1 } ∩ { 2 } ) = ∅ ) → ( ♯ ‘ ( { 0 , 1 } ∪ { 2 } ) ) = ( ( ♯ ‘ { 0 , 1 } ) + ( ♯ ‘ { 2 } ) ) ) | |
| 12 | 3 4 10 11 | mp3an | ⊢ ( ♯ ‘ ( { 0 , 1 } ∪ { 2 } ) ) = ( ( ♯ ‘ { 0 , 1 } ) + ( ♯ ‘ { 2 } ) ) |
| 13 | 2 12 | eqtri | ⊢ ( ♯ ‘ { 0 , 1 , 2 } ) = ( ( ♯ ‘ { 0 , 1 } ) + ( ♯ ‘ { 2 } ) ) |
| 14 | prhash2ex | ⊢ ( ♯ ‘ { 0 , 1 } ) = 2 | |
| 15 | 2z | ⊢ 2 ∈ ℤ | |
| 16 | hashsng | ⊢ ( 2 ∈ ℤ → ( ♯ ‘ { 2 } ) = 1 ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ♯ ‘ { 2 } ) = 1 |
| 18 | 14 17 | oveq12i | ⊢ ( ( ♯ ‘ { 0 , 1 } ) + ( ♯ ‘ { 2 } ) ) = ( 2 + 1 ) |
| 19 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 20 | 18 19 | eqtri | ⊢ ( ( ♯ ‘ { 0 , 1 } ) + ( ♯ ‘ { 2 } ) ) = 3 |
| 21 | 13 20 | eqtri | ⊢ ( ♯ ‘ { 0 , 1 , 2 } ) = 3 |