This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set size function # , which gives the cardinality of a finite set as a member of NN0 , and assigns all infinite sets the value +oo . For example, ( #{ 0 , 1 , 2 } ) = 3 ( ex-hash ). (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hash | ⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chash | ⊢ ♯ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | caddc | ⊢ + | |
| 5 | c1 | ⊢ 1 | |
| 6 | 3 5 4 | co | ⊢ ( 𝑥 + 1 ) |
| 7 | 1 2 6 | cmpt | ⊢ ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) |
| 8 | cc0 | ⊢ 0 | |
| 9 | 7 8 | crdg | ⊢ rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) |
| 10 | com | ⊢ ω | |
| 11 | 9 10 | cres | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 12 | ccrd | ⊢ card | |
| 13 | 11 12 | ccom | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) |
| 14 | cfn | ⊢ Fin | |
| 15 | 2 14 | cdif | ⊢ ( V ∖ Fin ) |
| 16 | cpnf | ⊢ +∞ | |
| 17 | 16 | csn | ⊢ { +∞ } |
| 18 | 15 17 | cxp | ⊢ ( ( V ∖ Fin ) × { +∞ } ) |
| 19 | 13 18 | cun | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| 20 | 0 19 | wceq | ⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |