This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-gcd . (Contributed by AV, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-gcd | |- ( -u 6 gcd 9 ) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn | |- 6 e. NN |
|
| 2 | 1 | nnzi | |- 6 e. ZZ |
| 3 | 9nn | |- 9 e. NN |
|
| 4 | 3 | nnzi | |- 9 e. ZZ |
| 5 | neggcd | |- ( ( 6 e. ZZ /\ 9 e. ZZ ) -> ( -u 6 gcd 9 ) = ( 6 gcd 9 ) ) |
|
| 6 | 2 4 5 | mp2an | |- ( -u 6 gcd 9 ) = ( 6 gcd 9 ) |
| 7 | 6cn | |- 6 e. CC |
|
| 8 | 3cn | |- 3 e. CC |
|
| 9 | 6p3e9 | |- ( 6 + 3 ) = 9 |
|
| 10 | 7 8 9 | addcomli | |- ( 3 + 6 ) = 9 |
| 11 | 10 | eqcomi | |- 9 = ( 3 + 6 ) |
| 12 | 11 | oveq2i | |- ( 6 gcd 9 ) = ( 6 gcd ( 3 + 6 ) ) |
| 13 | 3z | |- 3 e. ZZ |
|
| 14 | gcdcom | |- ( ( 6 e. ZZ /\ 3 e. ZZ ) -> ( 6 gcd 3 ) = ( 3 gcd 6 ) ) |
|
| 15 | 2 13 14 | mp2an | |- ( 6 gcd 3 ) = ( 3 gcd 6 ) |
| 16 | 3p3e6 | |- ( 3 + 3 ) = 6 |
|
| 17 | 16 | eqcomi | |- 6 = ( 3 + 3 ) |
| 18 | 17 | oveq2i | |- ( 3 gcd 6 ) = ( 3 gcd ( 3 + 3 ) ) |
| 19 | 15 18 | eqtri | |- ( 6 gcd 3 ) = ( 3 gcd ( 3 + 3 ) ) |
| 20 | gcdadd | |- ( ( 6 e. ZZ /\ 3 e. ZZ ) -> ( 6 gcd 3 ) = ( 6 gcd ( 3 + 6 ) ) ) |
|
| 21 | 2 13 20 | mp2an | |- ( 6 gcd 3 ) = ( 6 gcd ( 3 + 6 ) ) |
| 22 | gcdid | |- ( 3 e. ZZ -> ( 3 gcd 3 ) = ( abs ` 3 ) ) |
|
| 23 | 13 22 | ax-mp | |- ( 3 gcd 3 ) = ( abs ` 3 ) |
| 24 | gcdadd | |- ( ( 3 e. ZZ /\ 3 e. ZZ ) -> ( 3 gcd 3 ) = ( 3 gcd ( 3 + 3 ) ) ) |
|
| 25 | 13 13 24 | mp2an | |- ( 3 gcd 3 ) = ( 3 gcd ( 3 + 3 ) ) |
| 26 | 3re | |- 3 e. RR |
|
| 27 | 0re | |- 0 e. RR |
|
| 28 | 3pos | |- 0 < 3 |
|
| 29 | 27 26 28 | ltleii | |- 0 <_ 3 |
| 30 | absid | |- ( ( 3 e. RR /\ 0 <_ 3 ) -> ( abs ` 3 ) = 3 ) |
|
| 31 | 26 29 30 | mp2an | |- ( abs ` 3 ) = 3 |
| 32 | 23 25 31 | 3eqtr3i | |- ( 3 gcd ( 3 + 3 ) ) = 3 |
| 33 | 19 21 32 | 3eqtr3i | |- ( 6 gcd ( 3 + 6 ) ) = 3 |
| 34 | 12 33 | eqtri | |- ( 6 gcd 9 ) = 3 |
| 35 | 6 34 | eqtri | |- ( -u 6 gcd 9 ) = 3 |