This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the gcd operator. For example, ( -u 6 gcd 9 ) = 3 ( ex-gcd ). For an alternate definition, based on the definition in ApostolNT p. 15, see dfgcd2 . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-gcd | ⊢ gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cgcd | ⊢ gcd | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cz | ⊢ ℤ | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cc0 | ⊢ 0 | |
| 6 | 4 5 | wceq | ⊢ 𝑥 = 0 |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 5 | wceq | ⊢ 𝑦 = 0 |
| 9 | 6 8 | wa | ⊢ ( 𝑥 = 0 ∧ 𝑦 = 0 ) |
| 10 | vn | ⊢ 𝑛 | |
| 11 | 10 | cv | ⊢ 𝑛 |
| 12 | cdvds | ⊢ ∥ | |
| 13 | 11 4 12 | wbr | ⊢ 𝑛 ∥ 𝑥 |
| 14 | 11 7 12 | wbr | ⊢ 𝑛 ∥ 𝑦 |
| 15 | 13 14 | wa | ⊢ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) |
| 16 | 15 10 2 | crab | ⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } |
| 17 | cr | ⊢ ℝ | |
| 18 | clt | ⊢ < | |
| 19 | 16 17 18 | csup | ⊢ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) |
| 20 | 9 5 19 | cif | ⊢ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) |
| 21 | 1 3 2 2 20 | cmpo | ⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |
| 22 | 0 21 | wceq | ⊢ gcd = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦 ) } , ℝ , < ) ) ) |