This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-fl . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-fl | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ∧ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | 3re | ⊢ 3 ∈ ℝ | |
| 3 | 2 | rehalfcli | ⊢ ( 3 / 2 ) ∈ ℝ |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | 4 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 6 | 2lt3 | ⊢ 2 < 3 | |
| 7 | 5 6 | eqbrtri | ⊢ ( 1 · 2 ) < 3 |
| 8 | 2pos | ⊢ 0 < 2 | |
| 9 | 2re | ⊢ 2 ∈ ℝ | |
| 10 | 1 2 9 | ltmuldivi | ⊢ ( 0 < 2 → ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) ) |
| 11 | 8 10 | ax-mp | ⊢ ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) |
| 12 | 7 11 | mpbi | ⊢ 1 < ( 3 / 2 ) |
| 13 | 1 3 12 | ltleii | ⊢ 1 ≤ ( 3 / 2 ) |
| 14 | 3lt4 | ⊢ 3 < 4 | |
| 15 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 16 | 14 15 | breqtrri | ⊢ 3 < ( 2 · 2 ) |
| 17 | 9 8 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 18 | ltdivmul | ⊢ ( ( 3 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 3 / 2 ) < 2 ↔ 3 < ( 2 · 2 ) ) ) | |
| 19 | 2 9 17 18 | mp3an | ⊢ ( ( 3 / 2 ) < 2 ↔ 3 < ( 2 · 2 ) ) |
| 20 | 16 19 | mpbir | ⊢ ( 3 / 2 ) < 2 |
| 21 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 22 | 20 21 | breqtri | ⊢ ( 3 / 2 ) < ( 1 + 1 ) |
| 23 | 1z | ⊢ 1 ∈ ℤ | |
| 24 | flbi | ⊢ ( ( ( 3 / 2 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ↔ ( 1 ≤ ( 3 / 2 ) ∧ ( 3 / 2 ) < ( 1 + 1 ) ) ) ) | |
| 25 | 3 23 24 | mp2an | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ↔ ( 1 ≤ ( 3 / 2 ) ∧ ( 3 / 2 ) < ( 1 + 1 ) ) ) |
| 26 | 13 22 25 | mpbir2an | ⊢ ( ⌊ ‘ ( 3 / 2 ) ) = 1 |
| 27 | 9 | renegcli | ⊢ - 2 ∈ ℝ |
| 28 | 3 | renegcli | ⊢ - ( 3 / 2 ) ∈ ℝ |
| 29 | 3 9 | ltnegi | ⊢ ( ( 3 / 2 ) < 2 ↔ - 2 < - ( 3 / 2 ) ) |
| 30 | 20 29 | mpbi | ⊢ - 2 < - ( 3 / 2 ) |
| 31 | 27 28 30 | ltleii | ⊢ - 2 ≤ - ( 3 / 2 ) |
| 32 | 4 | negcli | ⊢ - 2 ∈ ℂ |
| 33 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 34 | negdi2 | ⊢ ( ( - 2 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( - 2 + 1 ) = ( - - 2 − 1 ) ) | |
| 35 | 32 33 34 | mp2an | ⊢ - ( - 2 + 1 ) = ( - - 2 − 1 ) |
| 36 | 4 | negnegi | ⊢ - - 2 = 2 |
| 37 | 36 | oveq1i | ⊢ ( - - 2 − 1 ) = ( 2 − 1 ) |
| 38 | 35 37 | eqtri | ⊢ - ( - 2 + 1 ) = ( 2 − 1 ) |
| 39 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 40 | 39 12 | eqbrtri | ⊢ ( 2 − 1 ) < ( 3 / 2 ) |
| 41 | 38 40 | eqbrtri | ⊢ - ( - 2 + 1 ) < ( 3 / 2 ) |
| 42 | 27 1 | readdcli | ⊢ ( - 2 + 1 ) ∈ ℝ |
| 43 | 42 3 | ltnegcon1i | ⊢ ( - ( - 2 + 1 ) < ( 3 / 2 ) ↔ - ( 3 / 2 ) < ( - 2 + 1 ) ) |
| 44 | 41 43 | mpbi | ⊢ - ( 3 / 2 ) < ( - 2 + 1 ) |
| 45 | 2z | ⊢ 2 ∈ ℤ | |
| 46 | znegcl | ⊢ ( 2 ∈ ℤ → - 2 ∈ ℤ ) | |
| 47 | 45 46 | ax-mp | ⊢ - 2 ∈ ℤ |
| 48 | flbi | ⊢ ( ( - ( 3 / 2 ) ∈ ℝ ∧ - 2 ∈ ℤ ) → ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ↔ ( - 2 ≤ - ( 3 / 2 ) ∧ - ( 3 / 2 ) < ( - 2 + 1 ) ) ) ) | |
| 49 | 28 47 48 | mp2an | ⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ↔ ( - 2 ≤ - ( 3 / 2 ) ∧ - ( 3 / 2 ) < ( - 2 + 1 ) ) ) |
| 50 | 31 44 49 | mpbir2an | ⊢ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 |
| 51 | 26 50 | pm3.2i | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ∧ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ) |