This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-ceil . (Contributed by AV, 4-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-ceil | ⊢ ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-fl | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ∧ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ) | |
| 2 | 3re | ⊢ 3 ∈ ℝ | |
| 3 | 2 | rehalfcli | ⊢ ( 3 / 2 ) ∈ ℝ |
| 4 | 3 | renegcli | ⊢ - ( 3 / 2 ) ∈ ℝ |
| 5 | ceilval | ⊢ ( - ( 3 / 2 ) ∈ ℝ → ( ⌈ ‘ - ( 3 / 2 ) ) = - ( ⌊ ‘ - - ( 3 / 2 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ⌈ ‘ - ( 3 / 2 ) ) = - ( ⌊ ‘ - - ( 3 / 2 ) ) |
| 7 | 3 | recni | ⊢ ( 3 / 2 ) ∈ ℂ |
| 8 | 7 | negnegi | ⊢ - - ( 3 / 2 ) = ( 3 / 2 ) |
| 9 | 8 | eqcomi | ⊢ ( 3 / 2 ) = - - ( 3 / 2 ) |
| 10 | 9 | fveq2i | ⊢ ( ⌊ ‘ ( 3 / 2 ) ) = ( ⌊ ‘ - - ( 3 / 2 ) ) |
| 11 | 10 | eqeq1i | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ↔ ( ⌊ ‘ - - ( 3 / 2 ) ) = 1 ) |
| 12 | 11 | biimpi | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 → ( ⌊ ‘ - - ( 3 / 2 ) ) = 1 ) |
| 13 | 12 | negeqd | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 → - ( ⌊ ‘ - - ( 3 / 2 ) ) = - 1 ) |
| 14 | 6 13 | eqtrid | ⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 → ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) |
| 15 | ceilval | ⊢ ( ( 3 / 2 ) ∈ ℝ → ( ⌈ ‘ ( 3 / 2 ) ) = - ( ⌊ ‘ - ( 3 / 2 ) ) ) | |
| 16 | 3 15 | ax-mp | ⊢ ( ⌈ ‘ ( 3 / 2 ) ) = - ( ⌊ ‘ - ( 3 / 2 ) ) |
| 17 | negeq | ⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 → - ( ⌊ ‘ - ( 3 / 2 ) ) = - - 2 ) | |
| 18 | 2cn | ⊢ 2 ∈ ℂ | |
| 19 | 18 | negnegi | ⊢ - - 2 = 2 |
| 20 | 17 19 | eqtrdi | ⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 → - ( ⌊ ‘ - ( 3 / 2 ) ) = 2 ) |
| 21 | 16 20 | eqtrid | ⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 → ( ⌈ ‘ ( 3 / 2 ) ) = 2 ) |
| 22 | 14 21 | anim12ci | ⊢ ( ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ∧ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ) → ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) ) |
| 23 | 1 22 | ax-mp | ⊢ ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) |