This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example for df-fl . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ex-fl | |- ( ( |_ ` ( 3 / 2 ) ) = 1 /\ ( |_ ` -u ( 3 / 2 ) ) = -u 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | |- 1 e. RR |
|
| 2 | 3re | |- 3 e. RR |
|
| 3 | 2 | rehalfcli | |- ( 3 / 2 ) e. RR |
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 4 | mullidi | |- ( 1 x. 2 ) = 2 |
| 6 | 2lt3 | |- 2 < 3 |
|
| 7 | 5 6 | eqbrtri | |- ( 1 x. 2 ) < 3 |
| 8 | 2pos | |- 0 < 2 |
|
| 9 | 2re | |- 2 e. RR |
|
| 10 | 1 2 9 | ltmuldivi | |- ( 0 < 2 -> ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) ) |
| 11 | 8 10 | ax-mp | |- ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) |
| 12 | 7 11 | mpbi | |- 1 < ( 3 / 2 ) |
| 13 | 1 3 12 | ltleii | |- 1 <_ ( 3 / 2 ) |
| 14 | 3lt4 | |- 3 < 4 |
|
| 15 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 16 | 14 15 | breqtrri | |- 3 < ( 2 x. 2 ) |
| 17 | 9 8 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 18 | ltdivmul | |- ( ( 3 e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) ) |
|
| 19 | 2 9 17 18 | mp3an | |- ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) |
| 20 | 16 19 | mpbir | |- ( 3 / 2 ) < 2 |
| 21 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 22 | 20 21 | breqtri | |- ( 3 / 2 ) < ( 1 + 1 ) |
| 23 | 1z | |- 1 e. ZZ |
|
| 24 | flbi | |- ( ( ( 3 / 2 ) e. RR /\ 1 e. ZZ ) -> ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( 1 <_ ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) ) ) |
|
| 25 | 3 23 24 | mp2an | |- ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( 1 <_ ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) ) |
| 26 | 13 22 25 | mpbir2an | |- ( |_ ` ( 3 / 2 ) ) = 1 |
| 27 | 9 | renegcli | |- -u 2 e. RR |
| 28 | 3 | renegcli | |- -u ( 3 / 2 ) e. RR |
| 29 | 3 9 | ltnegi | |- ( ( 3 / 2 ) < 2 <-> -u 2 < -u ( 3 / 2 ) ) |
| 30 | 20 29 | mpbi | |- -u 2 < -u ( 3 / 2 ) |
| 31 | 27 28 30 | ltleii | |- -u 2 <_ -u ( 3 / 2 ) |
| 32 | 4 | negcli | |- -u 2 e. CC |
| 33 | ax-1cn | |- 1 e. CC |
|
| 34 | negdi2 | |- ( ( -u 2 e. CC /\ 1 e. CC ) -> -u ( -u 2 + 1 ) = ( -u -u 2 - 1 ) ) |
|
| 35 | 32 33 34 | mp2an | |- -u ( -u 2 + 1 ) = ( -u -u 2 - 1 ) |
| 36 | 4 | negnegi | |- -u -u 2 = 2 |
| 37 | 36 | oveq1i | |- ( -u -u 2 - 1 ) = ( 2 - 1 ) |
| 38 | 35 37 | eqtri | |- -u ( -u 2 + 1 ) = ( 2 - 1 ) |
| 39 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 40 | 39 12 | eqbrtri | |- ( 2 - 1 ) < ( 3 / 2 ) |
| 41 | 38 40 | eqbrtri | |- -u ( -u 2 + 1 ) < ( 3 / 2 ) |
| 42 | 27 1 | readdcli | |- ( -u 2 + 1 ) e. RR |
| 43 | 42 3 | ltnegcon1i | |- ( -u ( -u 2 + 1 ) < ( 3 / 2 ) <-> -u ( 3 / 2 ) < ( -u 2 + 1 ) ) |
| 44 | 41 43 | mpbi | |- -u ( 3 / 2 ) < ( -u 2 + 1 ) |
| 45 | 2z | |- 2 e. ZZ |
|
| 46 | znegcl | |- ( 2 e. ZZ -> -u 2 e. ZZ ) |
|
| 47 | 45 46 | ax-mp | |- -u 2 e. ZZ |
| 48 | flbi | |- ( ( -u ( 3 / 2 ) e. RR /\ -u 2 e. ZZ ) -> ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 <-> ( -u 2 <_ -u ( 3 / 2 ) /\ -u ( 3 / 2 ) < ( -u 2 + 1 ) ) ) ) |
|
| 49 | 28 47 48 | mp2an | |- ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 <-> ( -u 2 <_ -u ( 3 / 2 ) /\ -u ( 3 / 2 ) < ( -u 2 + 1 ) ) ) |
| 50 | 31 44 49 | mpbir2an | |- ( |_ ` -u ( 3 / 2 ) ) = -u 2 |
| 51 | 26 50 | pm3.2i | |- ( ( |_ ` ( 3 / 2 ) ) = 1 /\ ( |_ ` -u ( 3 / 2 ) ) = -u 2 ) |