This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of evth using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| evthf.2 | ⊢ Ⅎ 𝑦 𝐹 | ||
| evthf.3 | ⊢ Ⅎ 𝑥 𝑋 | ||
| evthf.4 | ⊢ Ⅎ 𝑦 𝑋 | ||
| evthf.5 | ⊢ Ⅎ 𝑥 𝜑 | ||
| evthf.6 | ⊢ Ⅎ 𝑦 𝜑 | ||
| evthf.7 | ⊢ 𝑋 = ∪ 𝐽 | ||
| evthf.8 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| evthf.9 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | ||
| evthf.10 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| evthf.11 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | ||
| Assertion | evthf | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthf.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | evthf.2 | ⊢ Ⅎ 𝑦 𝐹 | |
| 3 | evthf.3 | ⊢ Ⅎ 𝑥 𝑋 | |
| 4 | evthf.4 | ⊢ Ⅎ 𝑦 𝑋 | |
| 5 | evthf.5 | ⊢ Ⅎ 𝑥 𝜑 | |
| 6 | evthf.6 | ⊢ Ⅎ 𝑦 𝜑 | |
| 7 | evthf.7 | ⊢ 𝑋 = ∪ 𝐽 | |
| 8 | evthf.8 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 9 | evthf.9 | ⊢ ( 𝜑 → 𝐽 ∈ Comp ) | |
| 10 | evthf.10 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 11 | evthf.11 | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) | |
| 12 | 7 8 9 10 11 | evth | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ) |
| 13 | nfcv | ⊢ Ⅎ 𝑏 𝑋 | |
| 14 | nfcv | ⊢ Ⅎ 𝑦 𝑏 | |
| 15 | 2 14 | nffv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑏 ) |
| 16 | nfcv | ⊢ Ⅎ 𝑦 ≤ | |
| 17 | nfcv | ⊢ Ⅎ 𝑦 𝑎 | |
| 18 | 2 17 | nffv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑎 ) |
| 19 | 15 16 18 | nfbr | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 20 | nfv | ⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) | |
| 21 | fveq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 22 | 21 | breq1d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) |
| 23 | 13 4 19 20 22 | cbvralfw | ⊢ ( ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ) |
| 24 | 23 | rexbii | ⊢ ( ∃ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑎 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ) |
| 25 | nfcv | ⊢ Ⅎ 𝑎 𝑋 | |
| 26 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 27 | 1 26 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 28 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 29 | nfcv | ⊢ Ⅎ 𝑥 𝑎 | |
| 30 | 1 29 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑎 ) |
| 31 | 27 28 30 | nfbr | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 32 | 3 31 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 33 | nfv | ⊢ Ⅎ 𝑎 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) | |
| 34 | fveq2 | ⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 35 | 34 | breq2d | ⊢ ( 𝑎 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝑎 = 𝑥 → ( ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 37 | 25 3 32 33 36 | cbvrexfw | ⊢ ( ∃ 𝑎 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 38 | 24 37 | bitri | ⊢ ( ∃ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 39 | 12 38 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |