This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | jctr | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽 ) ) |
| 3 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐽 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝐽 ∈ Top → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 5 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 5 | jctr | ⊢ ( 𝐾 ∈ Top → ( 𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾 ) ) |
| 7 | istopon | ⊢ ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ↔ ( 𝐾 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐾 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐾 ∈ Top → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 9 | cnfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) | |
| 10 | 4 8 9 | syl2an | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) = { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ) |
| 11 | uniexg | ⊢ ( 𝐾 ∈ Top → ∪ 𝐾 ∈ V ) | |
| 12 | uniexg | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) | |
| 13 | mapvalg | ⊢ ( ( ∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V ) → ( ∪ 𝐾 ↑m ∪ 𝐽 ) = { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ) | |
| 14 | 11 12 13 | syl2anr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( ∪ 𝐾 ↑m ∪ 𝐽 ) = { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ) |
| 15 | mapex | ⊢ ( ( ∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V ) → { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ∈ V ) | |
| 16 | 12 11 15 | syl2an | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → { 𝑓 ∣ 𝑓 : ∪ 𝐽 ⟶ ∪ 𝐾 } ∈ V ) |
| 17 | 14 16 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∈ V ) |
| 18 | rabexg | ⊢ ( ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∈ V → { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → { 𝑓 ∈ ( ∪ 𝐾 ↑m ∪ 𝐽 ) ∣ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝐽 } ∈ V ) |
| 20 | 10 19 | eqeltrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Cn 𝐾 ) ∈ V ) |