This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf with a disjoint variable condition, which does not require ax-10 , ax-13 . For a version not dependent on ax-11 and ax-12, see cbvralvw . (Contributed by NM, 7-Mar-2004) Avoid ax-10 , ax-13 . (Revised by GG, 23-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvralfw.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| cbvralfw.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| cbvralfw.3 | ⊢ Ⅎ 𝑦 𝜑 | ||
| cbvralfw.4 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvralfw.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvralfw | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralfw.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | cbvralfw.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | cbvralfw.3 | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | cbvralfw.4 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | cbvralfw.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | 2 | nfcri | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 7 | 6 3 | nfim | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 → 𝜑 ) |
| 8 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 9 | 8 4 | nfim | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 → 𝜓 ) |
| 10 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 11 | 10 5 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
| 12 | 7 9 11 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
| 13 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 14 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) | |
| 15 | 12 13 14 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜓 ) |