This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf with a disjoint variable condition, which does not require ax-13 . For a version not dependent on ax-11 and ax-12, see cbvrexvw . (Contributed by FL, 27-Apr-2008) Avoid ax-10 , ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrexfw.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| cbvrexfw.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| cbvrexfw.3 | ⊢ Ⅎ 𝑦 𝜑 | ||
| cbvrexfw.4 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvrexfw.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvrexfw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexfw.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | cbvrexfw.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | cbvrexfw.3 | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | cbvrexfw.4 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | cbvrexfw.5 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | 3 | nfn | ⊢ Ⅎ 𝑦 ¬ 𝜑 |
| 7 | 4 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜓 |
| 8 | 5 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 9 | 1 2 6 7 8 | cbvralfw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 ) |
| 10 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 11 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝜓 ) | |
| 12 | 9 10 11 | 3bitr3i | ⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝜓 ) |
| 13 | 12 | con4bii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∈ 𝐴 𝜓 ) |