This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of evth using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthf.1 | |- F/_ x F |
|
| evthf.2 | |- F/_ y F |
||
| evthf.3 | |- F/_ x X |
||
| evthf.4 | |- F/_ y X |
||
| evthf.5 | |- F/ x ph |
||
| evthf.6 | |- F/ y ph |
||
| evthf.7 | |- X = U. J |
||
| evthf.8 | |- K = ( topGen ` ran (,) ) |
||
| evthf.9 | |- ( ph -> J e. Comp ) |
||
| evthf.10 | |- ( ph -> F e. ( J Cn K ) ) |
||
| evthf.11 | |- ( ph -> X =/= (/) ) |
||
| Assertion | evthf | |- ( ph -> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthf.1 | |- F/_ x F |
|
| 2 | evthf.2 | |- F/_ y F |
|
| 3 | evthf.3 | |- F/_ x X |
|
| 4 | evthf.4 | |- F/_ y X |
|
| 5 | evthf.5 | |- F/ x ph |
|
| 6 | evthf.6 | |- F/ y ph |
|
| 7 | evthf.7 | |- X = U. J |
|
| 8 | evthf.8 | |- K = ( topGen ` ran (,) ) |
|
| 9 | evthf.9 | |- ( ph -> J e. Comp ) |
|
| 10 | evthf.10 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 11 | evthf.11 | |- ( ph -> X =/= (/) ) |
|
| 12 | 7 8 9 10 11 | evth | |- ( ph -> E. a e. X A. b e. X ( F ` b ) <_ ( F ` a ) ) |
| 13 | nfcv | |- F/_ b X |
|
| 14 | nfcv | |- F/_ y b |
|
| 15 | 2 14 | nffv | |- F/_ y ( F ` b ) |
| 16 | nfcv | |- F/_ y <_ |
|
| 17 | nfcv | |- F/_ y a |
|
| 18 | 2 17 | nffv | |- F/_ y ( F ` a ) |
| 19 | 15 16 18 | nfbr | |- F/ y ( F ` b ) <_ ( F ` a ) |
| 20 | nfv | |- F/ b ( F ` y ) <_ ( F ` a ) |
|
| 21 | fveq2 | |- ( b = y -> ( F ` b ) = ( F ` y ) ) |
|
| 22 | 21 | breq1d | |- ( b = y -> ( ( F ` b ) <_ ( F ` a ) <-> ( F ` y ) <_ ( F ` a ) ) ) |
| 23 | 13 4 19 20 22 | cbvralfw | |- ( A. b e. X ( F ` b ) <_ ( F ` a ) <-> A. y e. X ( F ` y ) <_ ( F ` a ) ) |
| 24 | 23 | rexbii | |- ( E. a e. X A. b e. X ( F ` b ) <_ ( F ` a ) <-> E. a e. X A. y e. X ( F ` y ) <_ ( F ` a ) ) |
| 25 | nfcv | |- F/_ a X |
|
| 26 | nfcv | |- F/_ x y |
|
| 27 | 1 26 | nffv | |- F/_ x ( F ` y ) |
| 28 | nfcv | |- F/_ x <_ |
|
| 29 | nfcv | |- F/_ x a |
|
| 30 | 1 29 | nffv | |- F/_ x ( F ` a ) |
| 31 | 27 28 30 | nfbr | |- F/ x ( F ` y ) <_ ( F ` a ) |
| 32 | 3 31 | nfralw | |- F/ x A. y e. X ( F ` y ) <_ ( F ` a ) |
| 33 | nfv | |- F/ a A. y e. X ( F ` y ) <_ ( F ` x ) |
|
| 34 | fveq2 | |- ( a = x -> ( F ` a ) = ( F ` x ) ) |
|
| 35 | 34 | breq2d | |- ( a = x -> ( ( F ` y ) <_ ( F ` a ) <-> ( F ` y ) <_ ( F ` x ) ) ) |
| 36 | 35 | ralbidv | |- ( a = x -> ( A. y e. X ( F ` y ) <_ ( F ` a ) <-> A. y e. X ( F ` y ) <_ ( F ` x ) ) ) |
| 37 | 25 3 32 33 36 | cbvrexfw | |- ( E. a e. X A. y e. X ( F ` y ) <_ ( F ` a ) <-> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| 38 | 24 37 | bitri | |- ( E. a e. X A. b e. X ( F ` b ) <_ ( F ` a ) <-> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |
| 39 | 12 38 | sylib | |- ( ph -> E. x e. X A. y e. X ( F ` y ) <_ ( F ` x ) ) |