This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the evaluation map for the polynomial algebra. The function ( ( I evalSub S )R ) : V --> ( S ^m ( S ^m I ) ) makes sense when I is an index set, S is a ring, R is a subring of S , and where V is the set of polynomials in ( I mPoly R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments I --> S of the variables to elements of S formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-evls | ⊢ evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ces | ⊢ evalSub | |
| 1 | vi | ⊢ 𝑖 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | ccrg | ⊢ CRing | |
| 5 | cbs | ⊢ Base | |
| 6 | 3 | cv | ⊢ 𝑠 |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 8 | vb | ⊢ 𝑏 | |
| 9 | vr | ⊢ 𝑟 | |
| 10 | csubrg | ⊢ SubRing | |
| 11 | 6 10 | cfv | ⊢ ( SubRing ‘ 𝑠 ) |
| 12 | 1 | cv | ⊢ 𝑖 |
| 13 | cmpl | ⊢ mPoly | |
| 14 | cress | ⊢ ↾s | |
| 15 | 9 | cv | ⊢ 𝑟 |
| 16 | 6 15 14 | co | ⊢ ( 𝑠 ↾s 𝑟 ) |
| 17 | 12 16 13 | co | ⊢ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) |
| 18 | vw | ⊢ 𝑤 | |
| 19 | vf | ⊢ 𝑓 | |
| 20 | 18 | cv | ⊢ 𝑤 |
| 21 | crh | ⊢ RingHom | |
| 22 | cpws | ⊢ ↑s | |
| 23 | 8 | cv | ⊢ 𝑏 |
| 24 | cmap | ⊢ ↑m | |
| 25 | 23 12 24 | co | ⊢ ( 𝑏 ↑m 𝑖 ) |
| 26 | 6 25 22 | co | ⊢ ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) |
| 27 | 20 26 21 | co | ⊢ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) |
| 28 | 19 | cv | ⊢ 𝑓 |
| 29 | cascl | ⊢ algSc | |
| 30 | 20 29 | cfv | ⊢ ( algSc ‘ 𝑤 ) |
| 31 | 28 30 | ccom | ⊢ ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) |
| 32 | vx | ⊢ 𝑥 | |
| 33 | 32 | cv | ⊢ 𝑥 |
| 34 | 33 | csn | ⊢ { 𝑥 } |
| 35 | 25 34 | cxp | ⊢ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) |
| 36 | 32 15 35 | cmpt | ⊢ ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) |
| 37 | 31 36 | wceq | ⊢ ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) |
| 38 | cmvr | ⊢ mVar | |
| 39 | 12 16 38 | co | ⊢ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) |
| 40 | 28 39 | ccom | ⊢ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) |
| 41 | vg | ⊢ 𝑔 | |
| 42 | 41 | cv | ⊢ 𝑔 |
| 43 | 33 42 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) |
| 44 | 41 25 43 | cmpt | ⊢ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) |
| 45 | 32 12 44 | cmpt | ⊢ ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 46 | 40 45 | wceq | ⊢ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 47 | 37 46 | wa | ⊢ ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 48 | 47 19 27 | crio | ⊢ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 49 | 18 17 48 | csb | ⊢ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 50 | 9 11 49 | cmpt | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 51 | 8 7 50 | csb | ⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 52 | 1 3 2 4 51 | cmpo | ⊢ ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 53 | 0 52 | wceq | ⊢ evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |