This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsgsummul.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsgsummul.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsgsummul.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evlsgsummul.1 | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
| evlsgsummul.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsgsummul.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsgsummul.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | ||
| evlsgsummul.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsgsummul.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evlsgsummul.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsgsummul.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsgsummul.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsgsummul.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) | ||
| evlsgsummul.n | ⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) | ||
| evlsgsummul.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 1 ) | ||
| Assertion | evlsgsummul | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsgsummul.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsgsummul.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsgsummul.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 4 | evlsgsummul.1 | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
| 5 | evlsgsummul.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 6 | evlsgsummul.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 7 | evlsgsummul.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | |
| 8 | evlsgsummul.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 9 | evlsgsummul.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 10 | evlsgsummul.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 11 | evlsgsummul.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 12 | evlsgsummul.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 13 | evlsgsummul.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) | |
| 14 | evlsgsummul.n | ⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) | |
| 15 | evlsgsummul.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 1 ) | |
| 16 | 3 9 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 17 | 3 4 | ringidval | ⊢ 1 = ( 0g ‘ 𝐺 ) |
| 18 | 5 | subrgcrng | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 19 | 11 12 18 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 20 | 2 | mplcrng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑈 ∈ CRing ) → 𝑊 ∈ CRing ) |
| 21 | 10 19 20 | syl2anc | ⊢ ( 𝜑 → 𝑊 ∈ CRing ) |
| 22 | 3 | crngmgp | ⊢ ( 𝑊 ∈ CRing → 𝐺 ∈ CMnd ) |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 24 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 25 | 11 24 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 26 | ovex | ⊢ ( 𝐾 ↑m 𝐼 ) ∈ V | |
| 27 | 25 26 | jctir | ⊢ ( 𝜑 → ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) ) |
| 28 | 6 | pwsring | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → 𝑃 ∈ Ring ) |
| 29 | 7 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝐻 ∈ Mnd ) |
| 30 | 27 28 29 | 3syl | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 31 | nn0ex | ⊢ ℕ0 ∈ V | |
| 32 | 31 | a1i | ⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 33 | 32 14 | ssexd | ⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 34 | 1 2 5 6 8 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 35 | 10 11 12 34 | syl3anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 36 | 3 7 | rhmmhm | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) → 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 37 | 35 36 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 38 | 16 17 23 30 33 37 13 15 | gsummptmhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) = ( 𝑄 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) ) |
| 39 | 38 | eqcomd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |