This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlspw.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlspw.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlspw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evlspw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| evlspw.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlspw.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | ||
| evlspw.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | ||
| evlspw.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlspw.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evlspw.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlspw.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlspw.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlspw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| evlspw.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | evlspw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlspw.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlspw.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlspw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 4 | evlspw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 5 | evlspw.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 6 | evlspw.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 7 | evlspw.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | |
| 8 | evlspw.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 9 | evlspw.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 10 | evlspw.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 11 | evlspw.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 12 | evlspw.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 13 | evlspw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 14 | evlspw.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 15 | 1 2 5 6 8 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 16 | 10 11 12 15 | syl3anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 17 | 3 7 | rhmmhm | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) → 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 19 | 3 9 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 20 | eqid | ⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) | |
| 21 | 19 4 20 | mhmmulg | ⊢ ( ( 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |
| 22 | 18 13 14 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ 𝐻 ) ( 𝑄 ‘ 𝑋 ) ) ) |