This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsgsummul.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsgsummul.w | |- W = ( I mPoly U ) |
||
| evlsgsummul.g | |- G = ( mulGrp ` W ) |
||
| evlsgsummul.1 | |- .1. = ( 1r ` W ) |
||
| evlsgsummul.u | |- U = ( S |`s R ) |
||
| evlsgsummul.p | |- P = ( S ^s ( K ^m I ) ) |
||
| evlsgsummul.h | |- H = ( mulGrp ` P ) |
||
| evlsgsummul.k | |- K = ( Base ` S ) |
||
| evlsgsummul.b | |- B = ( Base ` W ) |
||
| evlsgsummul.i | |- ( ph -> I e. V ) |
||
| evlsgsummul.s | |- ( ph -> S e. CRing ) |
||
| evlsgsummul.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsgsummul.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
||
| evlsgsummul.n | |- ( ph -> N C_ NN0 ) |
||
| evlsgsummul.f | |- ( ph -> ( x e. N |-> Y ) finSupp .1. ) |
||
| Assertion | evlsgsummul | |- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsgsummul.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsgsummul.w | |- W = ( I mPoly U ) |
|
| 3 | evlsgsummul.g | |- G = ( mulGrp ` W ) |
|
| 4 | evlsgsummul.1 | |- .1. = ( 1r ` W ) |
|
| 5 | evlsgsummul.u | |- U = ( S |`s R ) |
|
| 6 | evlsgsummul.p | |- P = ( S ^s ( K ^m I ) ) |
|
| 7 | evlsgsummul.h | |- H = ( mulGrp ` P ) |
|
| 8 | evlsgsummul.k | |- K = ( Base ` S ) |
|
| 9 | evlsgsummul.b | |- B = ( Base ` W ) |
|
| 10 | evlsgsummul.i | |- ( ph -> I e. V ) |
|
| 11 | evlsgsummul.s | |- ( ph -> S e. CRing ) |
|
| 12 | evlsgsummul.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 13 | evlsgsummul.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
|
| 14 | evlsgsummul.n | |- ( ph -> N C_ NN0 ) |
|
| 15 | evlsgsummul.f | |- ( ph -> ( x e. N |-> Y ) finSupp .1. ) |
|
| 16 | 3 9 | mgpbas | |- B = ( Base ` G ) |
| 17 | 3 4 | ringidval | |- .1. = ( 0g ` G ) |
| 18 | 5 | subrgcrng | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 19 | 11 12 18 | syl2anc | |- ( ph -> U e. CRing ) |
| 20 | 2 | mplcrng | |- ( ( I e. V /\ U e. CRing ) -> W e. CRing ) |
| 21 | 10 19 20 | syl2anc | |- ( ph -> W e. CRing ) |
| 22 | 3 | crngmgp | |- ( W e. CRing -> G e. CMnd ) |
| 23 | 21 22 | syl | |- ( ph -> G e. CMnd ) |
| 24 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 25 | 11 24 | syl | |- ( ph -> S e. Ring ) |
| 26 | ovex | |- ( K ^m I ) e. _V |
|
| 27 | 25 26 | jctir | |- ( ph -> ( S e. Ring /\ ( K ^m I ) e. _V ) ) |
| 28 | 6 | pwsring | |- ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> P e. Ring ) |
| 29 | 7 | ringmgp | |- ( P e. Ring -> H e. Mnd ) |
| 30 | 27 28 29 | 3syl | |- ( ph -> H e. Mnd ) |
| 31 | nn0ex | |- NN0 e. _V |
|
| 32 | 31 | a1i | |- ( ph -> NN0 e. _V ) |
| 33 | 32 14 | ssexd | |- ( ph -> N e. _V ) |
| 34 | 1 2 5 6 8 | evlsrhm | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
| 35 | 10 11 12 34 | syl3anc | |- ( ph -> Q e. ( W RingHom P ) ) |
| 36 | 3 7 | rhmmhm | |- ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) |
| 37 | 35 36 | syl | |- ( ph -> Q e. ( G MndHom H ) ) |
| 38 | 16 17 23 30 33 37 13 15 | gsummptmhm | |- ( ph -> ( H gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( G gsum ( x e. N |-> Y ) ) ) ) |
| 39 | 38 | eqcomd | |- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |