This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclply1subcl.1 | ⊢ 𝐴 = ( algSc ‘ 𝑉 ) | |
| asclply1subcl.2 | ⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) | ||
| asclply1subcl.3 | ⊢ 𝑉 = ( Poly1 ‘ 𝑅 ) | ||
| asclply1subcl.4 | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| asclply1subcl.5 | ⊢ 𝑃 = ( Base ‘ 𝑊 ) | ||
| asclply1subcl.6 | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| asclply1subcl.7 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | ||
| Assertion | asclply1subcl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclply1subcl.1 | ⊢ 𝐴 = ( algSc ‘ 𝑉 ) | |
| 2 | asclply1subcl.2 | ⊢ 𝑈 = ( 𝑅 ↾s 𝑆 ) | |
| 3 | asclply1subcl.3 | ⊢ 𝑉 = ( Poly1 ‘ 𝑅 ) | |
| 4 | asclply1subcl.4 | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 5 | asclply1subcl.5 | ⊢ 𝑃 = ( Base ‘ 𝑊 ) | |
| 6 | asclply1subcl.6 | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | asclply1subcl.7 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | 8 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
| 11 | 10 7 | sseldd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑅 ) ) |
| 12 | subrgrcl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 13 | 3 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑉 ) ) |
| 14 | 6 12 13 | 3syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑉 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑉 ) ) ) |
| 16 | 11 15 | eleqtrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) ) |
| 17 | eqid | ⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) | |
| 18 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑉 ) ) = ( Base ‘ ( Scalar ‘ 𝑉 ) ) | |
| 19 | eqid | ⊢ ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ 𝑉 ) | |
| 20 | eqid | ⊢ ( 1r ‘ 𝑉 ) = ( 1r ‘ 𝑉 ) | |
| 21 | 1 17 18 19 20 | asclval | ⊢ ( 𝑍 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) → ( 𝐴 ‘ 𝑍 ) = ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) ) |
| 22 | 16 21 | syl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) = ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) ) |
| 23 | 3 2 4 5 | subrgply1 | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑃 ∈ ( SubRing ‘ 𝑉 ) ) |
| 24 | eqid | ⊢ ( 𝑉 ↾s 𝑃 ) = ( 𝑉 ↾s 𝑃 ) | |
| 25 | 24 19 | ressvsca | ⊢ ( 𝑃 ∈ ( SubRing ‘ 𝑉 ) → ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ) |
| 26 | 6 23 25 | 3syl | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ) |
| 27 | 26 | oveqd | ⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ( 1r ‘ 𝑉 ) ) ) |
| 28 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 29 | 20 | subrg1cl | ⊢ ( 𝑃 ∈ ( SubRing ‘ 𝑉 ) → ( 1r ‘ 𝑉 ) ∈ 𝑃 ) |
| 30 | 6 23 29 | 3syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑉 ) ∈ 𝑃 ) |
| 31 | 3 2 4 5 6 24 | ressply1vsca | ⊢ ( ( 𝜑 ∧ ( 𝑍 ∈ 𝑆 ∧ ( 1r ‘ 𝑉 ) ∈ 𝑃 ) ) → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ( 1r ‘ 𝑉 ) ) ) |
| 32 | 28 7 30 31 | syl12anc | ⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ ( 𝑉 ↾s 𝑃 ) ) ( 1r ‘ 𝑉 ) ) ) |
| 33 | 27 32 | eqtr4d | ⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) = ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) ) |
| 34 | 2 | subrgring | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑈 ∈ Ring ) |
| 35 | 4 | ply1lmod | ⊢ ( 𝑈 ∈ Ring → 𝑊 ∈ LMod ) |
| 36 | 6 34 35 | 3syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 37 | 2 8 | ressbas2 | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) → 𝑆 = ( Base ‘ 𝑈 ) ) |
| 38 | 6 9 37 | 3syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝑈 ) ) |
| 39 | 7 38 | eleqtrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑈 ) ) |
| 40 | 2 | ovexi | ⊢ 𝑈 ∈ V |
| 41 | 4 | ply1sca | ⊢ ( 𝑈 ∈ V → 𝑈 = ( Scalar ‘ 𝑊 ) ) |
| 42 | 40 41 | ax-mp | ⊢ 𝑈 = ( Scalar ‘ 𝑊 ) |
| 43 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 44 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 45 | 5 42 43 44 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ ( Base ‘ 𝑈 ) ∧ ( 1r ‘ 𝑉 ) ∈ 𝑃 ) → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) ∈ 𝑃 ) |
| 46 | 36 39 30 45 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑉 ) ) ∈ 𝑃 ) |
| 47 | 33 46 | eqeltrd | ⊢ ( 𝜑 → ( 𝑍 ( ·𝑠 ‘ 𝑉 ) ( 1r ‘ 𝑉 ) ) ∈ 𝑃 ) |
| 48 | 22 47 | eqeltrd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑍 ) ∈ 𝑃 ) |