This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evl1rhm and evls1rhm (formerly part of the proof of evl1rhm ): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1rhmlem.b | |- B = ( Base ` R ) |
|
| evl1rhmlem.t | |- T = ( R ^s B ) |
||
| evl1rhmlem.f | |- F = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
||
| Assertion | evls1rhmlem | |- ( R e. CRing -> F e. ( ( R ^s ( B ^m 1o ) ) RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1rhmlem.b | |- B = ( Base ` R ) |
|
| 2 | evl1rhmlem.t | |- T = ( R ^s B ) |
|
| 3 | evl1rhmlem.f | |- F = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
|
| 4 | ovex | |- ( B ^m 1o ) e. _V |
|
| 5 | eqid | |- ( R ^s ( B ^m 1o ) ) = ( R ^s ( B ^m 1o ) ) |
|
| 6 | 5 1 | pwsbas | |- ( ( R e. CRing /\ ( B ^m 1o ) e. _V ) -> ( B ^m ( B ^m 1o ) ) = ( Base ` ( R ^s ( B ^m 1o ) ) ) ) |
| 7 | 4 6 | mpan2 | |- ( R e. CRing -> ( B ^m ( B ^m 1o ) ) = ( Base ` ( R ^s ( B ^m 1o ) ) ) ) |
| 8 | 7 | mpteq1d | |- ( R e. CRing -> ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) = ( x e. ( Base ` ( R ^s ( B ^m 1o ) ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ) |
| 9 | 3 8 | eqtrid | |- ( R e. CRing -> F = ( x e. ( Base ` ( R ^s ( B ^m 1o ) ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) ) |
| 10 | eqid | |- ( Base ` ( R ^s ( B ^m 1o ) ) ) = ( Base ` ( R ^s ( B ^m 1o ) ) ) |
|
| 11 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 12 | 1 | fvexi | |- B e. _V |
| 13 | 12 | a1i | |- ( R e. CRing -> B e. _V ) |
| 14 | 4 | a1i | |- ( R e. CRing -> ( B ^m 1o ) e. _V ) |
| 15 | df1o2 | |- 1o = { (/) } |
|
| 16 | 0ex | |- (/) e. _V |
|
| 17 | eqid | |- ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) |
|
| 18 | 15 12 16 17 | mapsnf1o3 | |- ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) |
| 19 | f1of | |- ( ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
|
| 20 | 18 19 | mp1i | |- ( R e. CRing -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
| 21 | 2 5 10 11 13 14 20 | pwsco1rhm | |- ( R e. CRing -> ( x e. ( Base ` ( R ^s ( B ^m 1o ) ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( R ^s ( B ^m 1o ) ) RingHom T ) ) |
| 22 | 9 21 | eqeltrd | |- ( R e. CRing -> F e. ( ( R ^s ( B ^m 1o ) ) RingHom T ) ) |