This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evl1rhm and evls1rhm (formerly part of the proof of evl1rhm ): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1rhmlem.b | ||
| evl1rhmlem.t | |||
| evl1rhmlem.f | |||
| Assertion | evls1rhmlem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1rhmlem.b | ||
| 2 | evl1rhmlem.t | ||
| 3 | evl1rhmlem.f | ||
| 4 | ovex | ||
| 5 | eqid | ||
| 6 | 5 1 | pwsbas | |
| 7 | 4 6 | mpan2 | |
| 8 | 7 | mpteq1d | |
| 9 | 3 8 | eqtrid | |
| 10 | eqid | ||
| 11 | crngring | ||
| 12 | 1 | fvexi | |
| 13 | 12 | a1i | |
| 14 | 4 | a1i | |
| 15 | df1o2 | ||
| 16 | 0ex | ||
| 17 | eqid | ||
| 18 | 15 12 16 17 | mapsnf1o3 | |
| 19 | f1of | ||
| 20 | 18 19 | mp1i | |
| 21 | 2 5 10 11 13 14 20 | pwsco1rhm | |
| 22 | 9 21 | eqeltrd |