This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsco1rhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| pwsco1rhm.z | ⊢ 𝑍 = ( 𝑅 ↑s 𝐵 ) | ||
| pwsco1rhm.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | ||
| pwsco1rhm.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| pwsco1rhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| pwsco1rhm.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| pwsco1rhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | pwsco1rhm | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 RingHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsco1rhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| 2 | pwsco1rhm.z | ⊢ 𝑍 = ( 𝑅 ↑s 𝐵 ) | |
| 3 | pwsco1rhm.c | ⊢ 𝐶 = ( Base ‘ 𝑍 ) | |
| 4 | pwsco1rhm.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | pwsco1rhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | pwsco1rhm.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 7 | pwsco1rhm.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 2 | pwsring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊 ) → 𝑍 ∈ Ring ) |
| 9 | 4 6 8 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 10 | 1 | pwsring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 11 | 4 5 10 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 12 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 14 | 1 2 3 13 5 6 7 | pwsco1mhm | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ) |
| 15 | ringgrp | ⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Grp ) | |
| 16 | 9 15 | syl | ⊢ ( 𝜑 → 𝑍 ∈ Grp ) |
| 17 | ringgrp | ⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) | |
| 18 | 11 17 | syl | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 19 | ghmmhmb | ⊢ ( ( 𝑍 ∈ Grp ∧ 𝑌 ∈ Grp ) → ( 𝑍 GrpHom 𝑌 ) = ( 𝑍 MndHom 𝑌 ) ) | |
| 20 | 16 18 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑍 GrpHom 𝑌 ) = ( 𝑍 MndHom 𝑌 ) ) |
| 21 | 14 20 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 GrpHom 𝑌 ) ) |
| 22 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) | |
| 23 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) | |
| 24 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) | |
| 25 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 26 | 25 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 28 | 22 23 24 27 5 6 7 | pwsco1mhm | ⊢ ( 𝜑 → ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 30 | 2 29 | pwsbas | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ 𝑍 ) ) |
| 31 | 13 6 30 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ 𝑍 ) ) |
| 32 | 31 3 | eqtr4di | ⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = 𝐶 ) |
| 33 | 25 29 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 34 | 23 33 | pwsbas | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 35 | 27 6 34 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 36 | 32 35 | eqtr3d | ⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 37 | 36 | mpteq1d | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) = ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ↦ ( 𝑔 ∘ 𝐹 ) ) ) |
| 38 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) | |
| 39 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | |
| 40 | eqid | ⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) | |
| 41 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) | |
| 42 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) | |
| 43 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) | |
| 44 | 2 25 23 40 41 24 42 43 | pwsmgp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊 ) → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
| 45 | 4 6 44 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
| 46 | 45 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 47 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 48 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | |
| 49 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) | |
| 50 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | |
| 51 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) | |
| 52 | 1 25 22 47 48 49 50 51 | pwsmgp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
| 53 | 4 5 52 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
| 54 | 53 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 55 | 45 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 56 | 55 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) 𝑦 ) ) |
| 57 | 53 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 58 | 57 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) 𝑦 ) ) |
| 59 | 38 39 46 54 56 58 | mhmpropd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) = ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 60 | 28 37 59 | 3eltr4d | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) |
| 61 | 21 60 | jca | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 GrpHom 𝑌 ) ∧ ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) |
| 62 | 40 47 | isrhm | ⊢ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 RingHom 𝑌 ) ↔ ( ( 𝑍 ∈ Ring ∧ 𝑌 ∈ Ring ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 GrpHom 𝑌 ) ∧ ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) ) |
| 63 | 9 11 61 62 | syl21anbrc | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 RingHom 𝑌 ) ) |