This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1gsummul.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1gsummul.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evls1gsummul.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| evls1gsummul.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evls1gsummul.1 | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
| evls1gsummul.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1gsummul.p | ⊢ 𝑃 = ( 𝑆 ↑s 𝐾 ) | ||
| evls1gsummul.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | ||
| evls1gsummul.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evls1gsummul.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1gsummul.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1gsummul.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) | ||
| evls1gsummul.n | ⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) | ||
| evls1gsummul.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 1 ) | ||
| Assertion | evls1gsummul | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1gsummul.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1gsummul.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | evls1gsummul.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | evls1gsummul.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 5 | evls1gsummul.1 | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
| 6 | evls1gsummul.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 7 | evls1gsummul.p | ⊢ 𝑃 = ( 𝑆 ↑s 𝐾 ) | |
| 8 | evls1gsummul.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑃 ) | |
| 9 | evls1gsummul.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 10 | evls1gsummul.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 11 | evls1gsummul.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 12 | evls1gsummul.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) | |
| 13 | evls1gsummul.n | ⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) | |
| 14 | evls1gsummul.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 1 ) | |
| 15 | 4 9 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 16 | 4 5 | ringidval | ⊢ 1 = ( 0g ‘ 𝐺 ) |
| 17 | 6 | subrgcrng | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑈 ∈ CRing ) |
| 18 | 10 11 17 | syl2anc | ⊢ ( 𝜑 → 𝑈 ∈ CRing ) |
| 19 | 3 | ply1crng | ⊢ ( 𝑈 ∈ CRing → 𝑊 ∈ CRing ) |
| 20 | 4 | crngmgp | ⊢ ( 𝑊 ∈ CRing → 𝐺 ∈ CMnd ) |
| 21 | 18 19 20 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 22 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 23 | 10 22 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 24 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 25 | 23 24 | jctir | ⊢ ( 𝜑 → ( 𝑆 ∈ Ring ∧ 𝐾 ∈ V ) ) |
| 26 | 7 | pwsring | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝐾 ∈ V ) → 𝑃 ∈ Ring ) |
| 27 | 8 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝐻 ∈ Mnd ) |
| 28 | 25 26 27 | 3syl | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
| 29 | nn0ex | ⊢ ℕ0 ∈ V | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 31 | 30 13 | ssexd | ⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 32 | 1 2 7 6 3 | evls1rhm | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 33 | 10 11 32 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 34 | 4 8 | rhmmhm | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) → 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 35 | 33 34 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐺 MndHom 𝐻 ) ) |
| 36 | 15 16 21 28 31 35 12 14 | gsummptmhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) = ( 𝑄 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) ) |
| 37 | 36 | eqcomd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |