This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1pw.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1pw.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1pw.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| evls1pw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | ||
| evls1pw.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evls1pw.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evls1pw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| evls1pw.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1pw.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1pw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| evls1pw.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | evls1pw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1pw.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1pw.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 3 | evls1pw.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | evls1pw.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑊 ) | |
| 5 | evls1pw.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | evls1pw.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 7 | evls1pw.e | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 8 | evls1pw.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 9 | evls1pw.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 10 | evls1pw.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 11 | evls1pw.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 12 | eqid | ⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) | |
| 13 | 1 5 12 2 3 | evls1rhm | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 14 | 8 9 13 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 15 | eqid | ⊢ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) = ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 16 | 4 15 | rhmmhm | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 ∈ ( 𝐺 MndHom ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ) |
| 17 | 14 16 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐺 MndHom ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ) |
| 18 | 4 6 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 19 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) | |
| 20 | 18 7 19 | mhmmulg | ⊢ ( ( 𝑄 ∈ ( 𝐺 MndHom ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |
| 21 | 17 10 11 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ↑ 𝑋 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑋 ) ) ) |