This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1gsummul.q | |- Q = ( S evalSub1 R ) |
|
| evls1gsummul.k | |- K = ( Base ` S ) |
||
| evls1gsummul.w | |- W = ( Poly1 ` U ) |
||
| evls1gsummul.g | |- G = ( mulGrp ` W ) |
||
| evls1gsummul.1 | |- .1. = ( 1r ` W ) |
||
| evls1gsummul.u | |- U = ( S |`s R ) |
||
| evls1gsummul.p | |- P = ( S ^s K ) |
||
| evls1gsummul.h | |- H = ( mulGrp ` P ) |
||
| evls1gsummul.b | |- B = ( Base ` W ) |
||
| evls1gsummul.s | |- ( ph -> S e. CRing ) |
||
| evls1gsummul.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1gsummul.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
||
| evls1gsummul.n | |- ( ph -> N C_ NN0 ) |
||
| evls1gsummul.f | |- ( ph -> ( x e. N |-> Y ) finSupp .1. ) |
||
| Assertion | evls1gsummul | |- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1gsummul.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1gsummul.k | |- K = ( Base ` S ) |
|
| 3 | evls1gsummul.w | |- W = ( Poly1 ` U ) |
|
| 4 | evls1gsummul.g | |- G = ( mulGrp ` W ) |
|
| 5 | evls1gsummul.1 | |- .1. = ( 1r ` W ) |
|
| 6 | evls1gsummul.u | |- U = ( S |`s R ) |
|
| 7 | evls1gsummul.p | |- P = ( S ^s K ) |
|
| 8 | evls1gsummul.h | |- H = ( mulGrp ` P ) |
|
| 9 | evls1gsummul.b | |- B = ( Base ` W ) |
|
| 10 | evls1gsummul.s | |- ( ph -> S e. CRing ) |
|
| 11 | evls1gsummul.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 12 | evls1gsummul.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
|
| 13 | evls1gsummul.n | |- ( ph -> N C_ NN0 ) |
|
| 14 | evls1gsummul.f | |- ( ph -> ( x e. N |-> Y ) finSupp .1. ) |
|
| 15 | 4 9 | mgpbas | |- B = ( Base ` G ) |
| 16 | 4 5 | ringidval | |- .1. = ( 0g ` G ) |
| 17 | 6 | subrgcrng | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> U e. CRing ) |
| 18 | 10 11 17 | syl2anc | |- ( ph -> U e. CRing ) |
| 19 | 3 | ply1crng | |- ( U e. CRing -> W e. CRing ) |
| 20 | 4 | crngmgp | |- ( W e. CRing -> G e. CMnd ) |
| 21 | 18 19 20 | 3syl | |- ( ph -> G e. CMnd ) |
| 22 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 23 | 10 22 | syl | |- ( ph -> S e. Ring ) |
| 24 | 2 | fvexi | |- K e. _V |
| 25 | 23 24 | jctir | |- ( ph -> ( S e. Ring /\ K e. _V ) ) |
| 26 | 7 | pwsring | |- ( ( S e. Ring /\ K e. _V ) -> P e. Ring ) |
| 27 | 8 | ringmgp | |- ( P e. Ring -> H e. Mnd ) |
| 28 | 25 26 27 | 3syl | |- ( ph -> H e. Mnd ) |
| 29 | nn0ex | |- NN0 e. _V |
|
| 30 | 29 | a1i | |- ( ph -> NN0 e. _V ) |
| 31 | 30 13 | ssexd | |- ( ph -> N e. _V ) |
| 32 | 1 2 7 6 3 | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
| 33 | 10 11 32 | syl2anc | |- ( ph -> Q e. ( W RingHom P ) ) |
| 34 | 4 8 | rhmmhm | |- ( Q e. ( W RingHom P ) -> Q e. ( G MndHom H ) ) |
| 35 | 33 34 | syl | |- ( ph -> Q e. ( G MndHom H ) ) |
| 36 | 15 16 21 28 31 35 12 14 | gsummptmhm | |- ( ph -> ( H gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( G gsum ( x e. N |-> Y ) ) ) ) |
| 37 | 36 | eqcomd | |- ( ph -> ( Q ` ( G gsum ( x e. N |-> Y ) ) ) = ( H gsum ( x e. N |-> ( Q ` Y ) ) ) ) |