This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for the variable. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1var.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1var.v | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| evl1var.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1vard.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1vard.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evl1vard.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1vard.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | evl1vard | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1var.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1var.v | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | evl1var.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1vard.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 5 | evl1vard.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 6 | evl1vard.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 7 | evl1vard.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 9 | 2 4 5 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝑈 ) |
| 10 | 6 8 9 | 3syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 11 | 1 2 3 | evl1var | ⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐵 ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = ( ( I ↾ 𝐵 ) ‘ 𝑌 ) ) |
| 14 | fvresi | ⊢ ( 𝑌 ∈ 𝐵 → ( ( I ↾ 𝐵 ) ‘ 𝑌 ) = 𝑌 ) | |
| 15 | 7 14 | syl | ⊢ ( 𝜑 → ( ( I ↾ 𝐵 ) ‘ 𝑌 ) = 𝑌 ) |
| 16 | 13 15 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 ) |
| 17 | 10 16 | jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑌 ) = 𝑌 ) ) |