This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
| mapsncnv.b | ⊢ 𝐵 ∈ V | ||
| mapsncnv.x | ⊢ 𝑋 ∈ V | ||
| mapsncnv.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) | ||
| Assertion | mapsncnv | ⊢ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
| 2 | mapsncnv.b | ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | ⊢ 𝑋 ∈ V | |
| 4 | mapsncnv.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) | |
| 5 | elmapi | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝑥 : { 𝑋 } ⟶ 𝐵 ) | |
| 6 | 3 | snid | ⊢ 𝑋 ∈ { 𝑋 } |
| 7 | ffvelcdm | ⊢ ( ( 𝑥 : { 𝑋 } ⟶ 𝐵 ∧ 𝑋 ∈ { 𝑋 } ) → ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | eqid | ⊢ { 𝑋 } = { 𝑋 } | |
| 10 | 9 2 3 | mapsnconst | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) |
| 11 | 8 10 | jca | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → ( ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) ) |
| 12 | eleq1 | ⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( 𝑦 ∈ 𝐵 ↔ ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ) ) | |
| 13 | sneq | ⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → { 𝑦 } = { ( 𝑥 ‘ 𝑋 ) } ) | |
| 14 | 13 | xpeq2d | ⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( { 𝑋 } × { 𝑦 } ) = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) ↔ 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) ) |
| 16 | 12 15 | anbi12d | ⊢ ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ↔ ( ( 𝑥 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { ( 𝑥 ‘ 𝑋 ) } ) ) ) ) |
| 17 | 11 16 | syl5ibrcom | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) → ( 𝑦 = ( 𝑥 ‘ 𝑋 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) |
| 19 | fconst6g | ⊢ ( 𝑦 ∈ 𝐵 → ( { 𝑋 } × { 𝑦 } ) : { 𝑋 } ⟶ 𝐵 ) | |
| 20 | snex | ⊢ { 𝑋 } ∈ V | |
| 21 | 2 20 | elmap | ⊢ ( ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ ( { 𝑋 } × { 𝑦 } ) : { 𝑋 } ⟶ 𝐵 ) |
| 22 | 19 21 | sylibr | ⊢ ( 𝑦 ∈ 𝐵 → ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ) |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 23 | fvconst2 | ⊢ ( 𝑋 ∈ { 𝑋 } → ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 25 | 6 24 | mp1i | ⊢ ( 𝑦 ∈ 𝐵 → ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) = 𝑦 ) |
| 26 | 25 | eqcomd | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) |
| 27 | 22 26 | jca | ⊢ ( 𝑦 ∈ 𝐵 → ( ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) ) |
| 28 | eleq1 | ⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ) ) | |
| 29 | fveq1 | ⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑥 ‘ 𝑋 ) = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) | |
| 30 | 29 | eqeq2d | ⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑦 = ( 𝑥 ‘ 𝑋 ) ↔ 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) ) |
| 31 | 28 30 | anbi12d | ⊢ ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( ( { 𝑋 } × { 𝑦 } ) ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( ( { 𝑋 } × { 𝑦 } ) ‘ 𝑋 ) ) ) ) |
| 32 | 27 31 | syl5ibrcom | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑥 = ( { 𝑋 } × { 𝑦 } ) → ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) → ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ) |
| 34 | 18 33 | impbii | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) |
| 35 | 1 | oveq2i | ⊢ ( 𝐵 ↑m 𝑆 ) = ( 𝐵 ↑m { 𝑋 } ) |
| 36 | 35 | eleq2i | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↔ 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ) |
| 37 | 36 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m { 𝑋 } ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ) |
| 38 | 1 | xpeq1i | ⊢ ( 𝑆 × { 𝑦 } ) = ( { 𝑋 } × { 𝑦 } ) |
| 39 | 38 | eqeq2i | ⊢ ( 𝑥 = ( 𝑆 × { 𝑦 } ) ↔ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) |
| 40 | 39 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( { 𝑋 } × { 𝑦 } ) ) ) |
| 41 | 34 37 40 | 3bitr4i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) ) |
| 42 | 41 | opabbii | ⊢ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) } |
| 43 | df-mpt | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } | |
| 44 | 4 43 | eqtri | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 45 | 44 | cnveqi | ⊢ ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 46 | cnvopab | ⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } | |
| 47 | 45 46 | eqtri | ⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ∧ 𝑦 = ( 𝑥 ‘ 𝑋 ) ) } |
| 48 | df-mpt | ⊢ ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( 𝑆 × { 𝑦 } ) ) } | |
| 49 | 42 47 48 | 3eqtr4i | ⊢ ◡ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |