This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufnfv.1 | ⊢ 𝐴 ∈ V | |
| eufnfv.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | eufnfv | ⊢ ∃! 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufnfv.1 | ⊢ 𝐴 ∈ V | |
| 2 | eufnfv.2 | ⊢ 𝐵 ∈ V | |
| 3 | 1 | mptex | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V |
| 4 | eqeq2 | ⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑓 = 𝑧 ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) | |
| 5 | 4 | bibi2d | ⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
| 6 | 5 | albidv | ⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ↔ ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
| 7 | 3 6 | spcev | ⊢ ( ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑧 ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ) |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 9 | 2 8 | fnmpti | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 |
| 10 | fneq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑓 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) | |
| 11 | 9 10 | mpbiri | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → 𝑓 Fn 𝐴 ) |
| 12 | 11 | pm4.71ri | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑓 Fn 𝐴 ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 13 | dffn5 | ⊢ ( 𝑓 Fn 𝐴 ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 14 | eqeq1 | ⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) | |
| 15 | 13 14 | sylbi | ⊢ ( 𝑓 Fn 𝐴 → ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 16 | fvex | ⊢ ( 𝑓 ‘ 𝑥 ) ∈ V | |
| 17 | 16 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ V |
| 18 | mpteqb | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) |
| 20 | 15 19 | bitrdi | ⊢ ( 𝑓 Fn 𝐴 → ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ) |
| 21 | 20 | pm5.32i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ) |
| 22 | 12 21 | bitr2i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 23 | 7 22 | mpg | ⊢ ∃ 𝑧 ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) |
| 24 | eu6 | ⊢ ( ∃! 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ ∃ 𝑧 ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ) | |
| 25 | 23 24 | mpbir | ⊢ ∃! 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) |