This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is uniquely determined by its values. (Contributed by NM, 31-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufnfv.1 | |- A e. _V |
|
| eufnfv.2 | |- B e. _V |
||
| Assertion | eufnfv | |- E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufnfv.1 | |- A e. _V |
|
| 2 | eufnfv.2 | |- B e. _V |
|
| 3 | 1 | mptex | |- ( x e. A |-> B ) e. _V |
| 4 | eqeq2 | |- ( z = ( x e. A |-> B ) -> ( f = z <-> f = ( x e. A |-> B ) ) ) |
|
| 5 | 4 | bibi2d | |- ( z = ( x e. A |-> B ) -> ( ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) <-> ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) ) ) |
| 6 | 5 | albidv | |- ( z = ( x e. A |-> B ) -> ( A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) <-> A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) ) ) |
| 7 | 3 6 | spcev | |- ( A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) -> E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) ) |
| 8 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 9 | 2 8 | fnmpti | |- ( x e. A |-> B ) Fn A |
| 10 | fneq1 | |- ( f = ( x e. A |-> B ) -> ( f Fn A <-> ( x e. A |-> B ) Fn A ) ) |
|
| 11 | 9 10 | mpbiri | |- ( f = ( x e. A |-> B ) -> f Fn A ) |
| 12 | 11 | pm4.71ri | |- ( f = ( x e. A |-> B ) <-> ( f Fn A /\ f = ( x e. A |-> B ) ) ) |
| 13 | dffn5 | |- ( f Fn A <-> f = ( x e. A |-> ( f ` x ) ) ) |
|
| 14 | eqeq1 | |- ( f = ( x e. A |-> ( f ` x ) ) -> ( f = ( x e. A |-> B ) <-> ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) ) ) |
|
| 15 | 13 14 | sylbi | |- ( f Fn A -> ( f = ( x e. A |-> B ) <-> ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) ) ) |
| 16 | fvex | |- ( f ` x ) e. _V |
|
| 17 | 16 | rgenw | |- A. x e. A ( f ` x ) e. _V |
| 18 | mpteqb | |- ( A. x e. A ( f ` x ) e. _V -> ( ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) ) |
|
| 19 | 17 18 | ax-mp | |- ( ( x e. A |-> ( f ` x ) ) = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) |
| 20 | 15 19 | bitrdi | |- ( f Fn A -> ( f = ( x e. A |-> B ) <-> A. x e. A ( f ` x ) = B ) ) |
| 21 | 20 | pm5.32i | |- ( ( f Fn A /\ f = ( x e. A |-> B ) ) <-> ( f Fn A /\ A. x e. A ( f ` x ) = B ) ) |
| 22 | 12 21 | bitr2i | |- ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = ( x e. A |-> B ) ) |
| 23 | 7 22 | mpg | |- E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) |
| 24 | eu6 | |- ( E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> E. z A. f ( ( f Fn A /\ A. x e. A ( f ` x ) = B ) <-> f = z ) ) |
|
| 25 | 23 24 | mpbir | |- E! f ( f Fn A /\ A. x e. A ( f ` x ) = B ) |