This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 in a more convenient form , see also erimeq ). (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 29-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erimeq2 | ⊢ ( 𝑅 ∈ 𝑉 → ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ∼ 𝐴 = 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoels | ⊢ Rel ∼ 𝐴 | |
| 2 | 1 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → Rel ∼ 𝐴 ) |
| 3 | eqvrelrel | ⊢ ( EqvRel 𝑅 → Rel 𝑅 ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → Rel 𝑅 ) |
| 5 | brcoels | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ∼ 𝐴 𝑦 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ) ) | |
| 6 | 5 | el2v | ⊢ ( 𝑥 ∼ 𝐴 𝑦 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ) |
| 7 | simpll | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → EqvRel 𝑅 ) | |
| 8 | simprl | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → 𝑢 ∈ 𝐴 ) | |
| 9 | simplr | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → ( dom 𝑅 / 𝑅 ) = 𝐴 ) | |
| 10 | 8 9 | eleqtrrd | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → 𝑢 ∈ ( dom 𝑅 / 𝑅 ) ) |
| 11 | simprr | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → 𝑥 ∈ 𝑢 ) | |
| 12 | eqvrelqsel | ⊢ ( ( EqvRel 𝑅 ∧ 𝑢 ∈ ( dom 𝑅 / 𝑅 ) ∧ 𝑥 ∈ 𝑢 ) → 𝑢 = [ 𝑥 ] 𝑅 ) | |
| 13 | 7 10 11 12 | syl3anc | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → 𝑢 = [ 𝑥 ] 𝑅 ) |
| 14 | 13 | eleq2d | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → ( 𝑦 ∈ 𝑢 ↔ 𝑦 ∈ [ 𝑥 ] 𝑅 ) ) |
| 15 | elecALTV | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑦 ∈ [ 𝑥 ] 𝑅 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 16 | 15 | el2v | ⊢ ( 𝑦 ∈ [ 𝑥 ] 𝑅 ↔ 𝑥 𝑅 𝑦 ) |
| 17 | 14 16 | bitrdi | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑥 ∈ 𝑢 ) ) → ( 𝑦 ∈ 𝑢 ↔ 𝑥 𝑅 𝑦 ) ) |
| 18 | 17 | anassrs | ⊢ ( ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑢 ) → ( 𝑦 ∈ 𝑢 ↔ 𝑥 𝑅 𝑦 ) ) |
| 19 | 18 | pm5.32da | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ 𝑢 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 20 | 19 | rexbidva | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 22 | simpll | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ 𝑥 𝑅 𝑦 ) → EqvRel 𝑅 ) | |
| 23 | simpr | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 𝑅 𝑦 ) | |
| 24 | 22 23 | eqvrelcl | ⊢ ( ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ dom 𝑅 ) |
| 25 | 24 | adantll | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ dom 𝑅 ) |
| 26 | eqvrelim | ⊢ ( EqvRel 𝑅 → dom 𝑅 = ran 𝑅 ) | |
| 27 | 26 | ad2antrl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → dom 𝑅 = ran 𝑅 ) |
| 28 | 27 | eleq2d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ ran 𝑅 ) ) |
| 29 | dmqseqim2 | ⊢ ( 𝑅 ∈ 𝑉 → ( Rel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( 𝑥 ∈ ran 𝑅 ↔ 𝑥 ∈ ∪ 𝐴 ) ) ) ) | |
| 30 | 3 29 | syl5 | ⊢ ( 𝑅 ∈ 𝑉 → ( EqvRel 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ( 𝑥 ∈ ran 𝑅 ↔ 𝑥 ∈ ∪ 𝐴 ) ) ) ) |
| 31 | 30 | imp32 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 ∈ ran 𝑅 ↔ 𝑥 ∈ ∪ 𝐴 ) ) |
| 32 | 28 31 | bitrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ ∪ 𝐴 ) ) |
| 33 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) | |
| 34 | 32 33 | bitrdi | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) ) |
| 36 | 25 35 | mpbid | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) ∧ 𝑥 𝑅 𝑦 ) → ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) |
| 37 | 36 | ex | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 𝑅 𝑦 → ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ) ) |
| 38 | 37 | pm4.71rd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 39 | r19.41v | ⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ) | |
| 40 | 38 39 | bitr4di | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ↔ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 41 | 21 40 | bitr4d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) ↔ 𝑥 𝑅 𝑦 ) ) |
| 42 | 6 41 | bitrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ( 𝑥 ∼ 𝐴 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) |
| 43 | 2 4 42 | eqbrrdv | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) → ∼ 𝐴 = 𝑅 ) |
| 44 | 43 | ex | ⊢ ( 𝑅 ∈ 𝑉 → ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ∼ 𝐴 = 𝑅 ) ) |