This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 28-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelqsel | ⊢ ( ( EqvRel 𝑅 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ∧ 𝐶 ∈ 𝐵 ) → 𝐵 = [ 𝐶 ] 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 ) | |
| 2 | eleq2 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( 𝐶 ∈ [ 𝑥 ] 𝑅 ↔ 𝐶 ∈ 𝐵 ) ) | |
| 3 | eqeq1 | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ↔ 𝐵 = [ 𝐶 ] 𝑅 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( 𝐶 ∈ [ 𝑥 ] 𝑅 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ↔ ( 𝐶 ∈ 𝐵 → 𝐵 = [ 𝐶 ] 𝑅 ) ) ) |
| 5 | elecALTV | ⊢ ( ( 𝑥 ∈ V ∧ 𝐶 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐶 ∈ [ 𝑥 ] 𝑅 ↔ 𝑥 𝑅 𝐶 ) ) | |
| 6 | 5 | el2v1 | ⊢ ( 𝐶 ∈ [ 𝑥 ] 𝑅 → ( 𝐶 ∈ [ 𝑥 ] 𝑅 ↔ 𝑥 𝑅 𝐶 ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐶 ∈ [ 𝑥 ] 𝑅 → 𝑥 𝑅 𝐶 ) |
| 8 | simpll | ⊢ ( ( ( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → EqvRel 𝑅 ) | |
| 9 | simpr | ⊢ ( ( ( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) | |
| 10 | 8 9 | eqvrelthi | ⊢ ( ( ( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) |
| 11 | 10 | ex | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑅 𝐶 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ) |
| 12 | 7 11 | syl5 | ⊢ ( ( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ∈ [ 𝑥 ] 𝑅 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ) |
| 13 | 1 4 12 | ectocld | ⊢ ( ( EqvRel 𝑅 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ) → ( 𝐶 ∈ 𝐵 → 𝐵 = [ 𝐶 ] 𝑅 ) ) |
| 14 | 13 | 3impia | ⊢ ( ( EqvRel 𝑅 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ∧ 𝐶 ∈ 𝐵 ) → 𝐵 = [ 𝐶 ] 𝑅 ) |