This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is prter3 in a more convenient form , see also erimeq ). (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 29-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erimeq2 | |- ( R e. V -> ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ~ A = R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoels | |- Rel ~ A |
|
| 2 | 1 | a1i | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> Rel ~ A ) |
| 3 | eqvrelrel | |- ( EqvRel R -> Rel R ) |
|
| 4 | 3 | ad2antrl | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> Rel R ) |
| 5 | brcoels | |- ( ( x e. _V /\ y e. _V ) -> ( x ~ A y <-> E. u e. A ( x e. u /\ y e. u ) ) ) |
|
| 6 | 5 | el2v | |- ( x ~ A y <-> E. u e. A ( x e. u /\ y e. u ) ) |
| 7 | simpll | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> EqvRel R ) |
|
| 8 | simprl | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> u e. A ) |
|
| 9 | simplr | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> ( dom R /. R ) = A ) |
|
| 10 | 8 9 | eleqtrrd | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> u e. ( dom R /. R ) ) |
| 11 | simprr | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> x e. u ) |
|
| 12 | eqvrelqsel | |- ( ( EqvRel R /\ u e. ( dom R /. R ) /\ x e. u ) -> u = [ x ] R ) |
|
| 13 | 7 10 11 12 | syl3anc | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> u = [ x ] R ) |
| 14 | 13 | eleq2d | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> ( y e. u <-> y e. [ x ] R ) ) |
| 15 | elecALTV | |- ( ( x e. _V /\ y e. _V ) -> ( y e. [ x ] R <-> x R y ) ) |
|
| 16 | 15 | el2v | |- ( y e. [ x ] R <-> x R y ) |
| 17 | 14 16 | bitrdi | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ ( u e. A /\ x e. u ) ) -> ( y e. u <-> x R y ) ) |
| 18 | 17 | anassrs | |- ( ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ u e. A ) /\ x e. u ) -> ( y e. u <-> x R y ) ) |
| 19 | 18 | pm5.32da | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ u e. A ) -> ( ( x e. u /\ y e. u ) <-> ( x e. u /\ x R y ) ) ) |
| 20 | 19 | rexbidva | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. u e. A ( x e. u /\ x R y ) ) ) |
| 21 | 20 | adantl | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. u e. A ( x e. u /\ x R y ) ) ) |
| 22 | simpll | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ x R y ) -> EqvRel R ) |
|
| 23 | simpr | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ x R y ) -> x R y ) |
|
| 24 | 22 23 | eqvrelcl | |- ( ( ( EqvRel R /\ ( dom R /. R ) = A ) /\ x R y ) -> x e. dom R ) |
| 25 | 24 | adantll | |- ( ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) /\ x R y ) -> x e. dom R ) |
| 26 | eqvrelim | |- ( EqvRel R -> dom R = ran R ) |
|
| 27 | 26 | ad2antrl | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> dom R = ran R ) |
| 28 | 27 | eleq2d | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. dom R <-> x e. ran R ) ) |
| 29 | dmqseqim2 | |- ( R e. V -> ( Rel R -> ( ( dom R /. R ) = A -> ( x e. ran R <-> x e. U. A ) ) ) ) |
|
| 30 | 3 29 | syl5 | |- ( R e. V -> ( EqvRel R -> ( ( dom R /. R ) = A -> ( x e. ran R <-> x e. U. A ) ) ) ) |
| 31 | 30 | imp32 | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. ran R <-> x e. U. A ) ) |
| 32 | 28 31 | bitrd | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. dom R <-> x e. U. A ) ) |
| 33 | eluni2 | |- ( x e. U. A <-> E. u e. A x e. u ) |
|
| 34 | 32 33 | bitrdi | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x e. dom R <-> E. u e. A x e. u ) ) |
| 35 | 34 | adantr | |- ( ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) /\ x R y ) -> ( x e. dom R <-> E. u e. A x e. u ) ) |
| 36 | 25 35 | mpbid | |- ( ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) /\ x R y ) -> E. u e. A x e. u ) |
| 37 | 36 | ex | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x R y -> E. u e. A x e. u ) ) |
| 38 | 37 | pm4.71rd | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x R y <-> ( E. u e. A x e. u /\ x R y ) ) ) |
| 39 | r19.41v | |- ( E. u e. A ( x e. u /\ x R y ) <-> ( E. u e. A x e. u /\ x R y ) ) |
|
| 40 | 38 39 | bitr4di | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x R y <-> E. u e. A ( x e. u /\ x R y ) ) ) |
| 41 | 21 40 | bitr4d | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> x R y ) ) |
| 42 | 6 41 | bitrid | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ( x ~ A y <-> x R y ) ) |
| 43 | 2 4 42 | eqbrrdv | |- ( ( R e. V /\ ( EqvRel R /\ ( dom R /. R ) = A ) ) -> ~ A = R ) |
| 44 | 43 | ex | |- ( R e. V -> ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ~ A = R ) ) |