This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrrdv.1 | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| eqbrrdv.2 | ⊢ ( 𝜑 → Rel 𝐵 ) | ||
| eqbrrdv.3 | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | ||
| Assertion | eqbrrdv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdv.1 | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| 2 | eqbrrdv.2 | ⊢ ( 𝜑 → Rel 𝐵 ) | |
| 3 | eqbrrdv.3 | ⊢ ( 𝜑 → ( 𝑥 𝐴 𝑦 ↔ 𝑥 𝐵 𝑦 ) ) | |
| 4 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
| 5 | df-br | ⊢ ( 𝑥 𝐵 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
| 6 | 3 4 5 | 3bitr3g | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 7 | 6 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 8 | eqrel | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) |
| 10 | 7 9 | mpbird | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |