This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of epweon , shorter but requiring ax-un . (Contributed by NM, 1-Nov-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epweonALT | ⊢ E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr | ⊢ E Fr On | |
| 2 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 3 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 4 | ordtri3or | ⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) | |
| 5 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 6 | biid | ⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) | |
| 7 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 8 | 5 6 7 | 3orbi123i | ⊢ ( ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 9 | 4 8 | sylibr | ⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
| 10 | 2 3 9 | syl2an | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
| 11 | 10 | rgen2 | ⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) |
| 12 | dfwe2 | ⊢ ( E We On ↔ ( E Fr On ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) ) | |
| 13 | 1 11 12 | mpbir2an | ⊢ E We On |