This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | engch | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ GCH ↔ 𝐵 ∈ GCH ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enfi | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) | |
| 2 | sdomen1 | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ≺ 𝑥 ↔ 𝐵 ≺ 𝑥 ) ) | |
| 3 | pwen | ⊢ ( 𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵 ) | |
| 4 | sdomen2 | ⊢ ( 𝒫 𝐴 ≈ 𝒫 𝐵 → ( 𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝑥 ≺ 𝒫 𝐴 ↔ 𝑥 ≺ 𝒫 𝐵 ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( 𝐴 ≈ 𝐵 → ( ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ↔ ( 𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵 ) ) ) |
| 7 | 6 | notbid | ⊢ ( 𝐴 ≈ 𝐵 → ( ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ↔ ¬ ( 𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵 ) ) ) |
| 8 | 7 | albidv | ⊢ ( 𝐴 ≈ 𝐵 → ( ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ↔ ∀ 𝑥 ¬ ( 𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵 ) ) ) |
| 9 | 1 8 | orbi12d | ⊢ ( 𝐴 ≈ 𝐵 → ( ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ↔ ( 𝐵 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵 ) ) ) ) |
| 10 | relen | ⊢ Rel ≈ | |
| 11 | 10 | brrelex1i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐴 ∈ V ) |
| 12 | elgch | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ GCH ↔ ( 𝐴 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴 ) ) ) ) |
| 14 | 10 | brrelex2i | ⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ∈ V ) |
| 15 | elgch | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ GCH ↔ ( 𝐵 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵 ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐵 ∈ GCH ↔ ( 𝐵 ∈ Fin ∨ ∀ 𝑥 ¬ ( 𝐵 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐵 ) ) ) ) |
| 17 | 9 13 16 | 3bitr4d | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ GCH ↔ 𝐵 ∈ GCH ) ) |