This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc for converting a monoid to a category. Lemma for bj-endmnd . (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | endmndlem.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| endmndlem.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| endmndlem.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| endmndlem.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| endmndlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| endmndlem.m | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( Base ‘ 𝑀 ) ) | ||
| endmndlem.p | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( +g ‘ 𝑀 ) ) | ||
| Assertion | endmndlem | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endmndlem.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | endmndlem.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | endmndlem.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | endmndlem.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | endmndlem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | endmndlem.m | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( Base ‘ 𝑀 ) ) | |
| 7 | endmndlem.p | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) = ( +g ‘ 𝑀 ) ) | |
| 8 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 9 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 10 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 11 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 12 | 1 2 3 8 9 9 9 10 11 | catcocl | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 15 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 16 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 17 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 18 | 1 2 3 13 14 14 14 15 16 14 17 | catass | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ 𝑘 ∈ ( 𝑋 𝐻 𝑋 ) ) ) → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑘 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑘 ) ) ) |
| 19 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 20 | 1 2 19 4 5 | catidcl | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 22 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) | |
| 24 | 1 2 19 21 22 3 22 23 | catlid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) |
| 25 | 1 2 19 21 22 3 22 23 | catrid | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ) → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝑓 ) |
| 26 | 6 7 12 18 20 24 25 | ismndd | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |