This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc for converting a monoid to a category. Lemma for bj-endmnd . (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | endmndlem.b | |- B = ( Base ` C ) |
|
| endmndlem.h | |- H = ( Hom ` C ) |
||
| endmndlem.o | |- .x. = ( comp ` C ) |
||
| endmndlem.c | |- ( ph -> C e. Cat ) |
||
| endmndlem.x | |- ( ph -> X e. B ) |
||
| endmndlem.m | |- ( ph -> ( X H X ) = ( Base ` M ) ) |
||
| endmndlem.p | |- ( ph -> ( <. X , X >. .x. X ) = ( +g ` M ) ) |
||
| Assertion | endmndlem | |- ( ph -> M e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endmndlem.b | |- B = ( Base ` C ) |
|
| 2 | endmndlem.h | |- H = ( Hom ` C ) |
|
| 3 | endmndlem.o | |- .x. = ( comp ` C ) |
|
| 4 | endmndlem.c | |- ( ph -> C e. Cat ) |
|
| 5 | endmndlem.x | |- ( ph -> X e. B ) |
|
| 6 | endmndlem.m | |- ( ph -> ( X H X ) = ( Base ` M ) ) |
|
| 7 | endmndlem.p | |- ( ph -> ( <. X , X >. .x. X ) = ( +g ` M ) ) |
|
| 8 | 4 | 3ad2ant1 | |- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> C e. Cat ) |
| 9 | 5 | 3ad2ant1 | |- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> X e. B ) |
| 10 | simp3 | |- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> g e. ( X H X ) ) |
|
| 11 | simp2 | |- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> f e. ( X H X ) ) |
|
| 12 | 1 2 3 8 9 9 9 10 11 | catcocl | |- ( ( ph /\ f e. ( X H X ) /\ g e. ( X H X ) ) -> ( f ( <. X , X >. .x. X ) g ) e. ( X H X ) ) |
| 13 | 4 | adantr | |- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> C e. Cat ) |
| 14 | 5 | adantr | |- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> X e. B ) |
| 15 | simpr3 | |- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> k e. ( X H X ) ) |
|
| 16 | simpr2 | |- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> g e. ( X H X ) ) |
|
| 17 | simpr1 | |- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> f e. ( X H X ) ) |
|
| 18 | 1 2 3 13 14 14 14 15 16 14 17 | catass | |- ( ( ph /\ ( f e. ( X H X ) /\ g e. ( X H X ) /\ k e. ( X H X ) ) ) -> ( ( f ( <. X , X >. .x. X ) g ) ( <. X , X >. .x. X ) k ) = ( f ( <. X , X >. .x. X ) ( g ( <. X , X >. .x. X ) k ) ) ) |
| 19 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 20 | 1 2 19 4 5 | catidcl | |- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
| 21 | 4 | adantr | |- ( ( ph /\ f e. ( X H X ) ) -> C e. Cat ) |
| 22 | 5 | adantr | |- ( ( ph /\ f e. ( X H X ) ) -> X e. B ) |
| 23 | simpr | |- ( ( ph /\ f e. ( X H X ) ) -> f e. ( X H X ) ) |
|
| 24 | 1 2 19 21 22 3 22 23 | catlid | |- ( ( ph /\ f e. ( X H X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. .x. X ) f ) = f ) |
| 25 | 1 2 19 21 22 3 22 23 | catrid | |- ( ( ph /\ f e. ( X H X ) ) -> ( f ( <. X , X >. .x. X ) ( ( Id ` C ) ` X ) ) = f ) |
| 26 | 6 7 12 18 20 24 25 | ismndd | |- ( ph -> M e. Mnd ) |