This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc for converting a monoid to a category. Lemma for bj-endmnd . (Contributed by Zhi Wang, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | endmndlem.b | ||
| endmndlem.h | |||
| endmndlem.o | |||
| endmndlem.c | |||
| endmndlem.x | |||
| endmndlem.m | |||
| endmndlem.p | |||
| Assertion | endmndlem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endmndlem.b | ||
| 2 | endmndlem.h | ||
| 3 | endmndlem.o | ||
| 4 | endmndlem.c | ||
| 5 | endmndlem.x | ||
| 6 | endmndlem.m | ||
| 7 | endmndlem.p | ||
| 8 | 4 | 3ad2ant1 | |
| 9 | 5 | 3ad2ant1 | |
| 10 | simp3 | ||
| 11 | simp2 | ||
| 12 | 1 2 3 8 9 9 9 10 11 | catcocl | |
| 13 | 4 | adantr | |
| 14 | 5 | adantr | |
| 15 | simpr3 | ||
| 16 | simpr2 | ||
| 17 | simpr1 | ||
| 18 | 1 2 3 13 14 14 14 15 16 14 17 | catass | |
| 19 | eqid | ||
| 20 | 1 2 19 4 5 | catidcl | |
| 21 | 4 | adantr | |
| 22 | 5 | adantr | |
| 23 | simpr | ||
| 24 | 1 2 19 21 22 3 22 23 | catlid | |
| 25 | 1 2 19 21 22 3 22 23 | catrid | |
| 26 | 6 7 12 18 20 24 25 | ismndd |