This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-endval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| bj-endval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | ||
| Assertion | bj-endmnd | ⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ∈ Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | bj-endval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
| 3 | 1 2 | bj-endbase | ⊢ ( 𝜑 → ( Base ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 4 | 3 | eqcomd | ⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) = ( Base ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 5 | 1 2 | bj-endcomp | ⊢ ( 𝜑 → ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
| 6 | 5 | eqcomd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) = ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 10 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 11 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 12 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 13 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 14 | 7 8 9 10 11 11 11 12 13 | catcocl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑦 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 15 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝐶 ∈ Cat ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) | |
| 18 | simp3 | ⊢ ( ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 20 | simp2 | ⊢ ( ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 21 | 17 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 22 | simp1 | ⊢ ( ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 23 | 17 22 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 24 | 7 8 9 15 16 16 16 19 21 16 23 | catass | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑦 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑧 ) = ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( 𝑦 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑧 ) ) ) |
| 25 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 26 | 7 8 25 1 2 | catidcl | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 27 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝐶 ∈ Cat ) |
| 28 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) | |
| 30 | 7 8 25 27 28 9 28 29 | catlid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝑥 ) = 𝑥 ) |
| 31 | 7 8 25 27 28 9 28 29 | catrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) → ( 𝑥 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝑥 ) |
| 32 | 4 6 14 24 26 30 31 | ismndd | ⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ∈ Mnd ) |