This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1 | |- ( A ~~ 1o <-> E. x A = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | |- 1o = { (/) } |
|
| 2 | 1 | breq2i | |- ( A ~~ 1o <-> A ~~ { (/) } ) |
| 3 | encv | |- ( A ~~ { (/) } -> ( A e. _V /\ { (/) } e. _V ) ) |
|
| 4 | breng | |- ( ( A e. _V /\ { (/) } e. _V ) -> ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) ) |
|
| 5 | 3 4 | syl | |- ( A ~~ { (/) } -> ( A ~~ { (/) } <-> E. f f : A -1-1-onto-> { (/) } ) ) |
| 6 | 5 | ibi | |- ( A ~~ { (/) } -> E. f f : A -1-1-onto-> { (/) } ) |
| 7 | 2 6 | sylbi | |- ( A ~~ 1o -> E. f f : A -1-1-onto-> { (/) } ) |
| 8 | f1ocnv | |- ( f : A -1-1-onto-> { (/) } -> `' f : { (/) } -1-1-onto-> A ) |
|
| 9 | f1ofo | |- ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } -onto-> A ) |
|
| 10 | forn | |- ( `' f : { (/) } -onto-> A -> ran `' f = A ) |
|
| 11 | 9 10 | syl | |- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = A ) |
| 12 | f1of | |- ( `' f : { (/) } -1-1-onto-> A -> `' f : { (/) } --> A ) |
|
| 13 | 0ex | |- (/) e. _V |
|
| 14 | 13 | fsn2 | |- ( `' f : { (/) } --> A <-> ( ( `' f ` (/) ) e. A /\ `' f = { <. (/) , ( `' f ` (/) ) >. } ) ) |
| 15 | 14 | simprbi | |- ( `' f : { (/) } --> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } ) |
| 16 | 12 15 | syl | |- ( `' f : { (/) } -1-1-onto-> A -> `' f = { <. (/) , ( `' f ` (/) ) >. } ) |
| 17 | 16 | rneqd | |- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = ran { <. (/) , ( `' f ` (/) ) >. } ) |
| 18 | 13 | rnsnop | |- ran { <. (/) , ( `' f ` (/) ) >. } = { ( `' f ` (/) ) } |
| 19 | 17 18 | eqtrdi | |- ( `' f : { (/) } -1-1-onto-> A -> ran `' f = { ( `' f ` (/) ) } ) |
| 20 | 11 19 | eqtr3d | |- ( `' f : { (/) } -1-1-onto-> A -> A = { ( `' f ` (/) ) } ) |
| 21 | fvex | |- ( `' f ` (/) ) e. _V |
|
| 22 | sneq | |- ( x = ( `' f ` (/) ) -> { x } = { ( `' f ` (/) ) } ) |
|
| 23 | 22 | eqeq2d | |- ( x = ( `' f ` (/) ) -> ( A = { x } <-> A = { ( `' f ` (/) ) } ) ) |
| 24 | 21 23 | spcev | |- ( A = { ( `' f ` (/) ) } -> E. x A = { x } ) |
| 25 | 8 20 24 | 3syl | |- ( f : A -1-1-onto-> { (/) } -> E. x A = { x } ) |
| 26 | 25 | exlimiv | |- ( E. f f : A -1-1-onto-> { (/) } -> E. x A = { x } ) |
| 27 | 7 26 | syl | |- ( A ~~ 1o -> E. x A = { x } ) |
| 28 | vex | |- x e. _V |
|
| 29 | 28 | ensn1 | |- { x } ~~ 1o |
| 30 | breq1 | |- ( A = { x } -> ( A ~~ 1o <-> { x } ~~ 1o ) ) |
|
| 31 | 29 30 | mpbiri | |- ( A = { x } -> A ~~ 1o ) |
| 32 | 31 | exlimiv | |- ( E. x A = { x } -> A ~~ 1o ) |
| 33 | 27 32 | impbii | |- ( A ~~ 1o <-> E. x A = { x } ) |