This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. Version of elovmporab1 with a disjoint variable condition, which does not require ax-13 . (Contributed by Alexander van der Vekens, 15-Jul-2018) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovmporab1w.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| elovmporab1w.v | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) | ||
| Assertion | elovmporab1w | ⊢ ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmporab1w.o | ⊢ 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) | |
| 2 | elovmporab1w.v | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V ) | |
| 3 | 1 | elmpocl | ⊢ ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
| 4 | 1 | a1i | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑂 = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑧 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } ) ) |
| 5 | csbeq1 | ⊢ ( 𝑥 = 𝑋 → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) | |
| 6 | 5 | ad2antrl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ⦋ 𝑥 / 𝑚 ⦌ 𝑀 = ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) |
| 7 | sbceq1a | ⊢ ( 𝑦 = 𝑌 → ( 𝜑 ↔ [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 8 | sbceq1a | ⊢ ( 𝑥 = 𝑋 → ( [ 𝑌 / 𝑦 ] 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) | |
| 9 | 7 8 | sylan9bbr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝜑 ↔ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 ) ) |
| 11 | 6 10 | rabeqbidv | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → { 𝑧 ∈ ⦋ 𝑥 / 𝑚 ⦌ 𝑀 ∣ 𝜑 } = { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
| 12 | eqidd | ⊢ ( ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑥 = 𝑋 ) → V = V ) | |
| 13 | simpl | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑋 ∈ V ) | |
| 14 | simpr | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 𝑌 ∈ V ) | |
| 15 | rabexg | ⊢ ( ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∈ V → { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) | |
| 16 | 2 15 | syl | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ∈ V ) |
| 17 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 18 | 17 | nfel1 | ⊢ Ⅎ 𝑥 𝑋 ∈ V |
| 19 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 20 | 19 | nfel1 | ⊢ Ⅎ 𝑥 𝑌 ∈ V |
| 21 | 18 20 | nfan | ⊢ Ⅎ 𝑥 ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) |
| 22 | nfcv | ⊢ Ⅎ 𝑦 𝑋 | |
| 23 | 22 | nfel1 | ⊢ Ⅎ 𝑦 𝑋 ∈ V |
| 24 | nfcv | ⊢ Ⅎ 𝑦 𝑌 | |
| 25 | 24 | nfel1 | ⊢ Ⅎ 𝑦 𝑌 ∈ V |
| 26 | 23 25 | nfan | ⊢ Ⅎ 𝑦 ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) |
| 27 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 | |
| 28 | nfcv | ⊢ Ⅎ 𝑥 𝑀 | |
| 29 | 17 28 | nfcsbw | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑚 ⦌ 𝑀 |
| 30 | 27 29 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } |
| 31 | nfsbc1v | ⊢ Ⅎ 𝑦 [ 𝑌 / 𝑦 ] 𝜑 | |
| 32 | 22 31 | nfsbcw | ⊢ Ⅎ 𝑦 [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 |
| 33 | nfcv | ⊢ Ⅎ 𝑦 𝑀 | |
| 34 | 22 33 | nfcsbw | ⊢ Ⅎ 𝑦 ⦋ 𝑋 / 𝑚 ⦌ 𝑀 |
| 35 | 32 34 | nfrabw | ⊢ Ⅎ 𝑦 { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } |
| 36 | 4 11 12 13 14 16 21 26 22 19 30 35 | ovmpodxf | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 𝑂 𝑌 ) = { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) |
| 37 | 36 | eleq2d | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) ↔ 𝑍 ∈ { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } ) ) |
| 38 | df-3an | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ↔ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) | |
| 39 | 38 | simplbi2com | ⊢ ( 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 → ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 40 | elrabi | ⊢ ( 𝑍 ∈ { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } → 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) | |
| 41 | 39 40 | syl11 | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ { 𝑧 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ∣ [ 𝑋 / 𝑥 ] [ 𝑌 / 𝑦 ] 𝜑 } → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 42 | 37 41 | sylbid | ⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) ) |
| 43 | 3 42 | mpcom | ⊢ ( 𝑍 ∈ ( 𝑋 𝑂 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋ 𝑋 / 𝑚 ⦌ 𝑀 ) ) |