This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellimcabssub0.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| ellimcabssub0.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) | ||
| ellimcabssub0.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| ellimcabssub0.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| ellimcabssub0.p | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| ellimcabssub0.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | ellimcabssub0 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ↔ 0 ∈ ( 𝐺 limℂ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimcabssub0.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | ellimcabssub0.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) | |
| 3 | ellimcabssub0.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 4 | ellimcabssub0.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | ellimcabssub0.p | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 6 | ellimcabssub0.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 7 | 0cnd | ⊢ ( 𝜑 → 0 ∈ ℂ ) | |
| 8 | 6 7 | 2thd | ⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ↔ 0 ∈ ℂ ) ) |
| 9 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 10 | 4 9 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 11 | 10 2 | fmptd | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ ℂ ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 13 | 12 | subid1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑧 ) − 0 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 15 | csbov1g | ⊢ ( 𝑧 ∈ V → ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) ) | |
| 16 | 15 | elv | ⊢ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) |
| 17 | sban | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 ∧ [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ) ) | |
| 18 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 19 | 18 | sbf | ⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
| 20 | clelsb1 | ⊢ ( [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) | |
| 21 | 19 20 | anbi12i | ⊢ ( ( [ 𝑧 / 𝑥 ] 𝜑 ∧ [ 𝑧 / 𝑥 ] 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) |
| 22 | 17 21 | bitri | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ) |
| 23 | 4 | nfth | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 24 | 23 | sbf | ⊢ ( [ 𝑧 / 𝑥 ] ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ) |
| 25 | sbim | ⊢ ( [ 𝑧 / 𝑥 ] ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) ) | |
| 26 | 24 25 | sylbb1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) → ( [ 𝑧 / 𝑥 ] ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) ) |
| 27 | 22 26 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) → ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) ) |
| 28 | 4 27 | ax-mp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) |
| 29 | sbsbc | ⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ) | |
| 30 | sbcel1g | ⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) | |
| 31 | 30 | elv | ⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 32 | 29 31 | bitri | ⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ ℂ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 33 | 28 32 | sylib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 34 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 35 | 33 34 | subcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) ∈ ℂ ) |
| 36 | 16 35 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 37 | 2 | fvmpts | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ) |
| 38 | 14 36 37 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) ) |
| 39 | 1 | fvmpts | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 40 | 14 33 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 41 | 40 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 − 𝐶 ) ) |
| 42 | 16 41 | eqtr4id | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ⦋ 𝑧 / 𝑥 ⦌ ( 𝐵 − 𝐶 ) = ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) |
| 43 | 13 38 42 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) = ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) |
| 44 | 43 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) ) |
| 45 | 44 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) |
| 46 | 45 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
| 47 | 46 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
| 48 | 47 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
| 49 | 48 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) |
| 50 | 8 49 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 0 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) ) |
| 51 | 4 1 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 52 | 51 3 5 | ellimc3 | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 53 | 11 3 5 | ellimc3 | ⊢ ( 𝜑 → ( 0 ∈ ( 𝐺 limℂ 𝐷 ) ↔ ( 0 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( 𝑧 ≠ 𝐷 ∧ ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑧 ) − 0 ) ) < 𝑦 ) ) ) ) |
| 54 | 50 52 53 | 3bitr4d | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ↔ 0 ∈ ( 𝐺 limℂ 𝐷 ) ) ) |