This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 ). (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clelsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) | |
| 2 | eleq1w | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 3 | 1 2 | sbievw2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |